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Abstract

We develop a simplified beam propagation model for x-

ray beamlines that includes partial coherence as well as the

impact of apertures on the beam. In particular, we consider

a general asymmetric Gaussian Schell model, which also

corresponds to a Gaussian Wigner function. The radiation

is thus represented by a 4 × 4 symmetric second-moment

matrix. We approximate rectangular apertures by Gaussian

apertures, taking care that the loss in flux is the same for

the two models. The beam will thus stay Gaussian through

both linear transport and passage through the apertures, al-

lowing a self-consistent picture. We derive expressions for

decrease in flux and changes in second moments upon pas-

sage through the aperture. We also derive expressions for the

coherence lengths and analyze how these propagate through

linear transport and Gaussian apertures. We apply our for-

malism to cases of low emittance light source beamlines

and develop a better understanding about trade-offs between

coherence length increase and flux reduction while passing

through physical apertures. Our formulae are implemented

in RadiaSoft’s Sirepo Shadow application allowing easy use

for realistic beamline models.

GAUSSIAN WIGNER FUNCTION

Transverse coherence properties of partially coherent

light at a given distance from the source can be described

by means of the cross-spectral density (CSD) function,

Γ(r1, r2; �) in the time domain or Γ̃(r1, r2;�) in the fre-

quency domain [1–3]. An equivalent description can be

effected in terms of the Wigner function (WF), � (r, �), re-

lated to the CSD Γ̃(r1, r2;�) via the Fourier transform w.r.t.

the pair of variables r1 − r2 and � . Thus, one can choose to

track either the CSD or the corresponding WF when model-

ing the propagation of partially coherent x-ray light through

the beamline. One useful property of the WF is that it can

be used just as a regular phase space density distribution

for computing the moments with respect to the phase space

variables. When the dynamics in the horizontal and vertical

trace spaces are decoupled, both the WF and the CSD are

separable, so that one is faced with a much simpler task of

tracking functions of 2D phase space variables.

In the frequently encountered case where the radiation

source is adequately described by the Gaussian Schell model,

the corresponding Wigner function at the source is known to

be Gaussian. As such, it is fully described by specifying its
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covariance matrix Σ, whose elements are the second-order

moments, viz., ��� = ⟨�2⟩, etc. Specifically, denoting the

the vector of the 4D phase space variables ®� ≡ (®�, ®�)� ≡
(�, �, �� , ��)� , the normalized Gaussian WF is given by

� (®�, ®�) = 1

2�
√

detΣ
exp

(

−1

2
®��Σ−1®�

)

. (1)

When � and � trace spaces are decoupled, we denote the 2D

phase space variables (�, �), and write for the Σ matrix and

the rms emittance �

Σ =

(

��� ���

��� �� �

)

(2)

and

� =

︃

����� � − �2
��

= (detΣ)1/2 , (3)

respectively. For convenience, we also introduce the quan-

tities �, � and � (similar to the Twiss parameters used in

accelerator physics):

� � = ��� , �� = �� � , �� = −��� , (4)

which are constrained by the identity

�� − �2
= 1 . (5)

The inverse of Σ is then given in the 2D phase space case by

Σ
−1

=
1

detΣ

(

�� � −���

−��� ���

)

=
1

�

(

� �

� �

)

, (6)

and for the Gaussian WF we have these parametrized expres-

sions:

2�
√

detΣ� (�, �)

= exp

[

− 1

2 detΣ
(�� ��

2 − 2����� + ����
2)

]

= exp

[

− 1

2�
(��2 + 2��� + ��2)

]

.

(7)

As long as the WF stays Gaussian, its evolution is fully

captured by tracking its moments through the second order

(i.e., tracking the elements of the 4 × 4 coupled Σ matrix

or a pair of or 2 × 2 matrices in the uncoupled case). This

closely parallels tracking the moments of the phase space

distribution function in the particle beam dynamics setting.

If the dynamics of the space space variables over a section of

the beamline are linear and described by a transport matrix
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M, such that ®� = �®�(0), then the concurrent evolution of

the Σ matrix is given by

Σ = �Σ(0)�� , (8)

and the Gaussian WF remains Gaussian. Matrix elements

are known for most common optical beamline elements with

the exception of apertures.

A Gaussian radiation WF does not remain Gaussian af-

ter passing through a hard-edge aperture. However, as we

show below, it is possible to construct an effective Gaussian

aperture such that the WF after the aperture is Gaussian

and matches the FWHM size in phase space of the physical

(non-Gaussian) WF. This allows one to model the propa-

gation of an x-ray beam through a beamline (represented

as a sequence of appropriate transfer matrices separated by

apertures) by tracking only the covariance matrix Σ of the

approximating Gaussian WF and keeping track of the flux

loss due to the apertures.

PROPAGATION OF A GAUSSIAN WF

THROUGH AN APERTURE (2D PHASE

SPACE)

The flux loss for a straight-hard-edge aperture extending

in � from −�ℎ to �ℎ is found by purely geometric considera-

tions. If the intensity distribution �� immediately before the

aperture is given by

�� = �0
1√

2���

exp

(

− (� − �)2

2�2
�

)

, (9)

the ratio of the flux � � immediately after the aperture to the

flux �� before the aperture will be

� � /�� =
1

2

[

erf

(

�ℎ + �√
2��

)

+ erf

(

�ℎ − �√
2��

)]

. (10)

The corresponding result for a rectangular aperture in two

spatial dimensions is, of course, a product of the 1D results

in � and �.

The radiation WF after the aperture is computed by per-

forming a convolution of the WF of the incident radiation

with the “Wigner function” of the aperture, convolving in

the angle variable � only. In terms of the aperture transfer

function � (�; �) for the E-field of the radiation wavefront,

®� � (�) = � (�, �) ®�� (�) , (11)

the aperture “Wigner function” is formally defined in the

same way as the radiation WF is defined from the electric

field of a coherent wavefront:

�� (�, �) =
1

�

∫ ∞

∞
�∗ (� − �/2; �)� (� + �/2; �)�−�2�� �/���.

(12)

Unlike the WF for the radiation field, the aperture “Wigner

function” is not normalized to unity.

For a hard-edge aperture the transfer function is a unit-

height top-hat function Π�ℎ
(�), and the WF for a matched

incoming Gaussian radiation beam at some distance �� after

the aperture works out to [2]

� (�, �; �ℎ, ��)

=
1

(2�)3/2
1

����

exp

(

− (� − ���)2

2�2
�

− �2

2�2
�

)

× Π�ℎ
(� − ���)

× ��

[

erf

(

4��� (�ℎ − |� − ��� |)√
2�

+ �
�√
2��

)]

. (13)

The Gaussian aperture is defined by a single parameter ��.

With � (�; �) = exp(−�2/2�2
�), the “Wigner function” for a

Gaussian aperture is given by

�� (�, �) =
2
√
���

�
exp

(

− �2

�2
�

)

exp

(

− �2

(�/2���)2

)

,

(14)

where � is the radiation wavelength, and the radiation WF

out of the aperture is

� � (�, �) ∝ exp

[

−1

2

((

2

�2
+ 1

2���

+
�2
��

�2
�, �

�2
��

)

�2

− 2���

�2
�, �

���

�� + 1

�2
�, �

�2

)]

,

(15)

where we used a shorthand

�2
�, � =

�

�
+ �2

8�2�2
=

detΣ

���

+ �2

8�2�2
. (16)

The elements of the Σ matrix after the aperture, denoted by

the subscript “f”, in terms of the parameter � of the Gaussian

aperture and the elements of the Σ matrix before the aperture,

are therefore given by

���, � =
�2���

�2 + 2���

, (17)

���, � =
�2���

�2 + 2���

, (18)

and

�� �, � = �� � −
2�2

��

�2 + 2���

+ �2

8�2�2
. (19)

Emittance after the Gaussian aperture is related to that before

the aperture as

�2
� −

(

�

4�

)2

=

[

�2 −
(

�

4�

)2
]

�2/2
��� + �2/2 , (20)

whence it is also clear that

lim
�→0

� � =
�

4�
. (21)

This means the radiation becomes fully coherent in the limit

of infinitely small aperture size. (Of course, the trade-off is

that the transmitted flux is approaching zero in this limit.)
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CROSS-SPECTRAL DENSITY AND

COHERENCE LENGTH

The cross-spectral density is related to the WF via

Γ̃(�1, �2) =
∫

�
( �1 + �2

2
, �

)

��2� (�1−�2) �/��� . (22)

The transverse coherence length � can be computed from

the spectral degree of coherence �(�1, �2), defined as

�(�1, �2) =
Γ̃(�1, �2)

︁

Γ̃(�1, �1)
︁

Γ̃(�2, �2)
. (23)

For a Gaussian WF, we find that

�(�1, �2) = exp

[

−� ��
��

(�1 + �2) (�1 − �2)

− (�1 − �2)2

2

( −1

4���

+ 4�2

�2

�2

���

)]

∝ exp

[

− (�1 − �2)2

2�2

]

.

(24)

Using the results for the elements of the Σ matrix before and

after the Gaussian aperture, one finds that � � = �, i.e., the

transverse coherence length does not change. However, the

rms transverse beam size becomes smaller, so the ratio �/��

becomes larger and by this measure the beam becomes more

coherent.

PROPAGATION THROUGH A GAUSSIAN

APERTURE (4D PHASE SPACE)

When the horizontal and vertical dimensions are cou-

pled and the aperture’s “Wigner function” is known, a

convolution-in-� procedure that parallels the one used for

the 2D phase space is used to calculate analytically the WF

after the aperture. For a Gaussian aperture, the convolution

of two Gaussians results in a WF that is Gaussian. Writing

the inverse of the covariance matrix Σ
−1 as an arrangement

of four 2 × 2 blocks �, �, �, and �,

Σ
−1

=

(

� �

� �

)

, (25)

and making use of the symmetry properties of Σ, we find

the corresponding 2 × 2 blocks � � , � � , � � , and � � of the

inverse covariance matrix after the aperture:

� � = �+��−��−1�+��−1 (�−1+�−1
� )−1�−1� , (26)

� � = ��−1 (�−1 + �−1
� )−1 , (27)

� � = (�−1 + �−1
� )−1�−1� = ��

� , (28)

and

� � = (�−1 + �−1
� )−1 , (29)

where, in terms of the parameters �� and �� specifying the

Gaussian aperture in the � and � directions,

�� =

(

2/�2
� 0

0 2/�2
�

)

(30)

and

�−1
� =

�2

8�2

(

1/�2
� 0

0 1/�2
�

)

. (31)

The covariance matrixΣ � after the aperture is then computed

via a numerical inversion procedure.

These formulae are being implemented to include aper-

tures in the beam statistics report produced by the Sirepo

web interface for the SHADOW code [4, 5].

HARD-EDGE APERTURE AND

EFFECTIVE GAUSSIAN APERTURE
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Figure 1: ����� as a function of distance from the aper-

ture for a physical (Lorentzian) beam, for 3 values of the

hard-edge aperture size 2�ℎ.

A key question is how to relate the parameter(s) �� of

the effective Gaussian aperture to the size 2�ℎ of the physi-

cal hard-edge aperture. Here we briefly outline the general

approach, leaving details to a separate publication. The ap-

proach is to match the FWHM sizes (in phase space) of

the physical and approximating Gaussian beams in the post-

aperture drift, sufficiently far from the aperture. The trans-

verse size of the Gaussian beam is known to grow asymptot-

ically linearly with distance � from the aperture at large �:

����� ≈ 2.355���, with �� = ����� in free space. The

projections of an initially-Gaussian WF on � and on � after a

hard-edge aperture we found to be approximately Lorentzian

at distances of practical interest from the aperture, with the

same asymptotically linear growth law for the transverse

beam size, ����� ≈ ������, as illustrated in Fig. 1.

(The example shown in the figure is for � = 3.98 × 10−10 m,

� = 5�/4� = 1.58 × 10−10 �m.) This allows us to match the

size of the approximating Gaussian beam to that of the phys-

ical beam and use Eq. 19 to compute the requisite parameter

of the Gaussian aperture,

�� =
�

4�

︄

2

�� �, � − �� �

(32)

(assuming here an incident Gaussian WF with ��� = 0).
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