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Abstract
Computation of space charge fields in accelerator simu-

lations is one of the most challenging tasks. The algorithm
proposed by Hockney and Eastwood is the fastest method for
numerically solving Poisson equations with open boundaries
and has been implemented in various accelerator simula-
tion codes. Recently, Vico-Greengard-Ferrando proposed a
new hybrid fast algorithm for computing volume potentials.
The new algorithm is promising higher accuracy and faster
error convergence than that of Hockney-Eastwood. This
study presents the implementation of the Vico-Greengard-
Ferrando solver in Synergia and shows a comparison of
results with these Poisson solvers.

INTRODUCTION
Particle-in-Cell (PIC) methods are commonly used to

compute space charge effects, beam-beam effects, etc. in
high-intensity accelerator modeling. In PIC calculations,
particles are deposited on a spatial grids and the electrostatic
field on these grids is calculated by solving the Poisson equa-
tion. Finding solutions of Poisson’s equations for all time
steps is the most time-consuming part of full-beam dynamics
simulation. Several numerical methods for solving Poisson
equations in multi-particle simulations have been developed
and are widely used, such as FFT-based methods [1,2], spec-
tral finite difference methods [3], and multi-grid spectral
finite difference methods [4, 5].

Among them, the FFT-based Green’s function method is
widely used to solve the Poisson equation in the open bound-
ary condition when the size of the beam is generally smaller
than the radius of the vacuum pipe. The Green’s function
and charge density are computed in the doubled-domain with
zero-padding [1]. In order to calculate the Green’s function
efficiently with high accuracy, several techniques were de-
veloped, such as the integrated Green’s function [6] and the
shifted Green’s function [7].

Recently Vico et al. developed a new Green function tech-
nique for fast convolution computation [8]. This method
introduces a truncated Green’s function by cutting of a re-
gion beyond the domain of interest. The Fourier transform
of this Green function can be solved analytically and shows
higher accuracy at the cost of the additional FFT. In this
study, the Vico-Greengard-Ferrando algorithm was imple-
mented for FFT-based Green function calculation. Numeri-
cal simulations show improved accuracy with smaller grid
sizes.
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POISSON SOLVERS
For a given charge distribution, 𝜌, the Poisson equation

of an open boundary condition:

∇⃗2𝜙 = − 𝜌
𝜖0

has a solution expressed with Green’s function as

𝜙( ⃗𝑟) = 1
𝜖0

∫ 𝐺( ⃗𝑟, ⃗𝑟′)𝜌( ⃗𝑟′)𝑑3 ⃗𝑟′

= 1
4𝜋𝜖0

∫ 1
| ⃗𝑟 − ⃗𝑟′|𝜌( ⃗𝑟′)𝑑3 ⃗𝑟′

The electric fields can be easily computed using ⃗𝐸 = −∇⃗𝜙.
However, the Green’s function above is defined in long range
and has singular at ⃗𝑟 = ⃗𝑟′. These make it difficult to calculate
accurate solution of the potential in Particle-in-Cell simula-
tions, and require fast algorithms and special and accurate
quadrature techniques.

One of most popular techniques in accelerator physics
codes is Hockney-Eastwood(HE) algorithm, which uses the
Fast Fourier Transform(FFT) with zero-padding. In this
algorithm, the charge distribution is zero-padded in the dou-
bled domain, and then aperiodic convolution is applied using
FFT as in Eq. (1).

𝜙( ⃗𝑟) = 1
𝜖0

ℎ𝑥ℎ𝑦ℎ𝑧ℱ−1 {ℱ{ ̂𝐺}ℱ{ ̂𝜌}} , (1)

where ̂𝐺 is the Green’s function on the extended domain,
̂𝜌 is the padded charge distribution, ℎ𝑥, ℎ𝑦, and ℎ𝑧 are grid

spacings on each spatial dimensions. Here, ℱ{⋅} repre-
sents a Fourier transformation in all spatial dimensions,
whereas ℱ−1{⋅} represents an inverse Fourier transforma-
tion in all spectral dimensions. This algorithm is scaled like
𝒪 ((2𝑁)𝑑(log(2𝑁))𝑑), where 𝑁 is the number of grid points
in each direction before padding and 𝑑 is the dimension size.

Vico et al. introduced a truncated spectral kernel for
Green’s function by replacing it as follows [8, 9]:

𝐺( ⃗𝑟) ⇒ 𝐺𝐿( ⃗𝑟) = 𝐺( ⃗𝑟)rect ( 𝑟
2𝐿) ,

where 𝐿 > √𝑑 and the indicator function, rect(𝑥), is defined
as

rect(𝑥) = { 1 for |𝑥| < 1/2
0 for |𝑥| > 1/2.

Then, the potential solution can be rewritten as

𝜙( ⃗𝑟) = 1
𝜖0

∫ 𝐺𝐿( ⃗𝑟, ⃗𝑟′)𝜌( ⃗𝑟′)𝑑3 ⃗𝑟′.
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(a) 𝑁 = 16 (b) 𝑁 = 32 (c) 𝑁 = 64

Figure 1: The electric potentials along the longitudinal beam axis with the different number of grids.

(a) Maximum Relative Errors (b) Minimum Relative Errors (c) Mean Relative Errors

Figure 2: The relative errors to the exact solution with the different number of grids.

In this Vico-Greengard-Ferrando Poisson solver, the
Fourier transform of the truncated Green’s function can be
solved analytically and computed in the truncated dimen-
sions, and the solution is characterized by fast convergence
of smooth data with higher accuracy. For example, in three
dimensions,

ℱ {𝐺𝐿} = 2
𝜖0

⎡⎢⎢
⎣

sin (𝐿|�⃗�|
2 )

| ⃗𝑘|
⎤⎥⎥
⎦

2

Therefore, the solution of the Poisson equation is

𝜙( ⃗𝑟) = 2
(2𝜋)3𝜖0

∫ 𝑒𝑖�⃗�⋅ ⃗𝑟′ ⎡⎢⎢
⎣

sin (𝐿|�⃗�|
2 )

| ⃗𝑘|
⎤⎥⎥
⎦

2

𝜌( ⃗𝑟′)𝑑3 ⃗𝑘.

One drawback of this algorithm is that the charge distri-
bution is zero-padded to a grid size of (4𝑁)𝑑 compared to
HE’s (2𝑁)𝑑. Vico et al. showed that the potential solution re-
quires FFT’s on a grid size of (2𝑁)𝑑 after a pre-computation
step of the inverse FFT of ℱ{𝐺𝐿}on a grid of size (4𝑁)𝑑.
The computational time of this pre-computation step can
be easily reduced by using vectorization algorithms. One
can also note that the singular point (𝑟 = 0) is avoided with-
out any special quadrature techniques as can be seen in the
spectral integration above.

NUMERICAL IMPLEMENTATION AND
TESTING

Synergia2 is an accelerator modeling framework for
combining physical effect modules for the simulation of sin-
gle or multiple bunch utilizing Particle-in-Cell methods [10].
In Synergia2, various space solvers are included, such
as 2.5 D and 3 D Hockney-Eastwood solvers, 2 D Bassetti-
Erskine solver, 2 D Kapchinskij-Vladimirskij solver (all of
these with open boundary conditions), and Rectangular Grid
solver with rectangular boundary conditions. In this study,
we implemented a new space charge solver in Synergia2
with the Vico-Greengard-Ferrando algorithm, and compare
simulation results with the Hockney-Eastwood solver.

The main difference between HE and VGF is that the
computation of the truncated Green’s function is done in
the quadruple domain, so it was easy to implement in
Synergia2. A uniform Gaussian distribution was used in
all 3 dimensions to simplify the simulation model:

𝜌( ⃗𝑟) = 𝑄
𝜎3(2𝜋)3/2 exp (− 𝑟2

2𝜎2 ) ,

where 𝑄 = 27.24 nC is the total charge of the beam, 𝜎 = 1
(mm) is the standard deviation for all 3 dimensions, and
𝑟 = | ⃗𝑟|.

The exact solution of the Poisson equation with the above
uniform Gaussian charge distribution is well known as:

𝜙( ⃗𝑟) = 𝑄
4𝜋𝜖0

1
𝑟 erf ⎛⎜

⎝
𝑟

√2𝜎
⎞⎟
⎠

. (2)
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(a) Maximum Relative Errors (b) Minimum Relative Errors

Figure 3: Comparisons of computational time.

The number of grids in each dimension is the same, i.e.,
[𝑁, 𝑁, 𝑁]. By increasing 𝑁 from 8 to 128 , we computed
the electric potentials using HE and VGF solvers. Fig. 1
shows the electric potentials along the longitudinal beam
axis for each algorithm with the different number of grids.
With small 𝑁, the potential with the HE algorithm has large
deviation at the center of the beam. As 𝑁 is increased, this
deviation is decreased.

The relative errors to the exact solutions in both algo-
rithms are compared in Fig. 2. The VGF algorithm has
smaller maximum and mean errors for small grid sizes, but
larger minimum errors for all grid sizes. The maximum
relative error for VGF occurs at the edge of the grid, but at
the center for HE. In the case of minimum relative error, the
opposite is true. Moreover, unlike HE, the accuracy of the
VGF algorithm does not depend significantly on the num-
ber of grid sizes. This means that VGF can achieve high
accuracy with a small grid size.

As expected, the computation time of the VGF algorithm
is relatively long with a large number of grids, as shown in
Fig. 3(a). This can be mitigated using advanced vectorization
algorithms. However, similar accuracies for VGF can be
achieved with lower 𝑁 and computation time is much shorter
than for HE.

Fig. 3(b) shows fractional computation time in each step
for both algorithms. The computation time for charge density
and Green’s function is a large part of the HE solver. For
the VGF algorithm, Green’s function computation time is
relatively longer due to the extended domain size.

CONCLUSION
The Vico-Greengard-Ferrando algorithm shows faster

convergence and higher accuracy than the Hockney-
Eastwood algorithm. A high degree of accuracy can be
achieved, especially at the center of the distribution. In the
VGF algorithm, the computation time increases significantly
as the number of grids increases. However, one can eas-
ily compensate for the computation time by showing fast

convergence with a smaller grid and by using vectorization
techniques.
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