
PARALLELIZATION OF RADIA MAGNETOSTATICS CODE∗

Anushka Banerjee† , Stony Brook University, Stony Brook, NY 11794, USA
Oleg Chubar,Brookhaven National Laboratory, Upton, NY 11973, USA

Gaël Le Bec, Joel Chavanne, ESRF, 38000 Grenoble, France
Boaz Nash, Christopher Hall, Jonathan Edelen, RadiaSoft LLC, Boulder, CO 80301, USA

Abstract
Radia 3D magnetostatics code has been used for the de-

sign of insertion devices for light sources over more than two
decades. The code uses the magnetization integral approach
that is efficient for solving permanent magnet and hybrid
magnet structures. The initial version of the Radia code
was sequential, its core written in C++ and interface in the
Mathematica language. This paper describes a new Python
interfaced parallel version of Radia and its applications. The
parallelization of the code was implemented on C++ level,
where the semi-analytical calculations of interaction matrix
elements and resultant magnetic fields were parallelized us-
ing the Message Passing Interface. The parallel performance
results are encouraging, particularly for magnetic field calcu-
lation post relaxation where a ∼600 speedup with respect to
sequential execution was obtained. The new parallel Radia
version facilitates designs of insertion devices and lattice
magnets for novel particle accelerators.

INTRODUCTION
The Radia code has been continuously improved for nearly

two decades since its inception and development in the In-
sertion Devices laboratory of the European Synchrotron
Radiation Facility (ESRF). From establishing boundary in-
tegral method-based calculations as an alternative and bet-
ter approach than the conventional finite element, for e.g.,
FLUX3D [1], Radia has been widely used to compute fields
for undulators. Over the last few years, Radia has not only
provided better time performance and precision results when
compared to FEM codes [2], it provides excellent agree-
ment between the calculated and measured field values cor-
responding to relatively simple structures like quadrupole
and sextupole [3], or complicated structures like the iron-
dominated electromagnetic structure: SOLEIL Undulator
HU256 [4].

Following the concepts of object-oriented programming,
the core part of Radia is written in C++ and was initially
interfaced to run serially on Wolfram Mathematica and Igor
Pro only. Currently, the new, open-source version of Radia
is already available in Python interface [5], with ongoing
developments to make it executable on web-based graphical
interface like Jupyter Notebook [6]. Radia’s Python interface
has been used for magnetic ”cross talk” computations of the
recent ESRF-Extremely Brilliant Source upgrade, where a
large number of sequential calculations with different input
parameters were performed in parallel at the ESRF cluster.
∗ Work supported by the US DOE BES SBIR grant no. DE-SC0018556.
† anushka.banerjee@stonybrook.edu

The calculated values had good agreement with the measured
values (relative errors in the 10-4 range) [7].

METHODS USED FOR
PARALLELIZATION

With an increased development in the field of light sources,
the importance of magnetostatics code has increased by man-
ifolds compared to what it was a few decades earlier. Despite
Radia’s stellar performance when compared to conventional
FEM based code, the target computations involving 3D mag-
netic simulations of the insertion devices and accelerator
magnets are quite complicated and CPU-intensive, with fur-
ther increasing complexities. With an aim to further improve
Radia’s overall performance, parallelization tasks were un-
dertaken.

MPI is a communication protocol and is used as the indus-
try standard for the message passing model where a certain
application comprises of a set of tasks which are assigned
their own local memory whose location can be in the same
machine or across several machines. Data exchange to con-
duct the operation by tasks is established by sending and
receiving messages [8]. MPI provides programmers the
flexibility to use it as a low-level approach with a detailed
control on the flow of data, or as a high-level programming
approach with parallel libraries designed to provide opti-
mized performance without going into the depths of the
MPI algorithm [9].

Solving any 3D magnetostatics problems in Radia com-
prises of 3 subsequent steps: calculation of elements of a
large (often tens GBs memory size) matrix called Interac-
tion Matrix and describing magnetic interaction between
‘active’ sub-volumes of a magnet geometry, created by seg-
mentation (1), performing a relaxation procedure on it to
determine values of the magnetization vector in all the “ac-
tive” sub-volumes (2), and computing magnetic field and/or
field integrals or other characteristics of magnetic fields,
created by the sub-volumes with magnetization or current
density (3). The two sections– the generation of the interac-
tion matrix (1) and the calculation of magnetic field values
after relaxation (3) are ‘embarrassingly parallel’ algorithms
and hence have been parallelized using MPI at the C++ level.

Interaction matrix is a dense matrix in Radia, that may
occupy a large memory, depending on geometry and its seg-
mentation. Relaxation of this matrix may require a large
number of iterations, in particular when solving complicated
iron-dominated geometries [2,4]. At each of these iterations,
a relatively small number of multiplications needs to be done
to take into account (or update) magnetization vector in each

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOTK018

MC5: Beam Dynamics and EM Fields

D03: Calculations of EM fields - Theory and Code Developments

MOPOTK018

481

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

sub-volume (created by segmentation). This makes applica-
tion of MPI not very efficient for parallelizing this algorithm.
Instead shared memory-based parallelization, implemented
using native multithreading capabilities introduced in C++11
standard library has been considered for parallelizing the
specific section of the Radia code. The structure used for
the tests is discussed in detail in the following section titled
‘Test Magnetic Structure’, followed by the outcomes detailed
in ‘Results of Benchmarking’.

TEST MAGNETIC STRUCTURE
To evaluate the parallel performance of the new version

of the Radia 3D magnetostatics code, we used a 3D model
of a 14mm-period, hybrid, in-vacuum, Cryo-cooled Perma-
nent Magnet Undulator (CPMU) at 4mm magnetic gap (see
Fig. 1). This model comprises of an upper and a lower array
with each of these arrays including an alternating sequence
of permanent magnets (PrFeB with 1.67 T remnant mag-
netization) and soft iron poles (Vanadium Permendur with
∼2.29 T magnetization at saturation). The model geometry
is generated by mirroring with respect to the three orthogo-
nal symmetry planes passing through the magnetic centre.
The geometry (specifically the poles) has been extensively
subdivided to achieve solving accuracy better than 0.001
with respect to the peak magnetic field. 22680 independent
sub-volumes are produced because of implementing subdivi-
sion before applying the symmetries, consequently yielding
a dense interaction matrix of size ∼2GB. The final calcu-
lated on-axis vertical field after solving the geometry for the
magnetization in the sub-volumes is shown in Fig. 2.

Figure 1: Radia 3D model of the hybrid, in-vacuum, CPMU
used for our parallel performance tests.

Figure 2: Calculated on-axis vertical magnetic field along
the CPMU structure using Radia.

RESULTS OF BENCHMARKING
Tests to evaluate parallel performance on many server

nodes were conducted at the National Energy Research Sci-
entific Computing Centre (NERSC), specifically the NERSC
supercomputer Cori. Cori is a Cray XC40 with a theoretical
peak performance of 30 petaflops. Execution times for each
section were obtained at the end of each test, iteratively per-
formed starting from 1 process (i.e., serial execution) and
going up to 1024 processes and then averaged over 3 runs for
each process number, thereby estimating the performance
characteristics.

The parallel version of the Radia code performed well for
both the cases – computation of elements of the interaction
matrix and computation of magnetic field post relaxation of
this matrix. For both the instances, a systematic decline in
the required execution times was observed with increasing
number of processes, see Fig. 3, that can be interpreted as the
corresponding computational speedup achieved because of
parallelizing the Radia code, leading to a maximum speedup
value of ∼200 for the setting up of interaction matrices, and
approximately ∼600 for computation of field values post
relaxation, see Fig. 4.

Figure 3: Mean time to set up the interaction matrix and
calculate magnetic field, both as a function of the number
of MPI processes.

Figure 4: Total speedup in time values to set up interaction
matrix and calculate field vs. number of MPI processes.

The performance corresponding to computation of el-
ements of the interaction matrix demonstrates significant

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOTK018

MOPOTK018C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

482

MC5: Beam Dynamics and EM Fields

D03: Calculations of EM fields - Theory and Code Developments

speed gain only until number of parallel processes is lesser
than 400, whereas no such parallel performance saturation
is observed for the function of field calculation after relax-
ation. Thus, profiling of the parallel performance was imple-
mented at the C++ level, where time stamps were introduced
at the beginning and end of specific functions in the code,
to evaluate their corresponding execution times. Functions
specifically related to communication and exchange of data
between processes were profiled, namely ’MPI_Send’ and
’MPI_Recv’. Primarily, ’MPI_Send’ is executed by work-
ers after they have computed the data packets to be sent
to the master, and ’MPI_Recv’ is performed by the master
to receive the data packets sent by each worker. The plots
demonstrating the total time required for the execution of
’MPI_Send’ by each worker and ’MPI_Recv’ by the master
are given in Fig. 5 for setting up of interaction matrix and
Fig. 6 for calculation of field post relaxation.

Figure 5: Total time to execute ’MPI_Send’ by each worker,
’MPI_Recv’ by master, and complete execution of inter-
action matrix generation vs. number of MPI processes.

Figure 6: Total time to execute ’MPI_Send’ by each worker,
’MPI_Recv’ by master, and complete execution of field cal-
culation vs. number of MPI processes.

For interaction matrix construction (Fig. 5), it can be
observed that at some point near the saturation, the time
spent by a worker in ’MPI_Send’ exceeds the total time spent
by the master in ’MPI_Recv’, such a crossover is absent in
case of the field calculation post relaxation, where the time
spent by a worker in ’MPI_Send’ is always much smaller
than the time spent by the master in ’MPI_Recv’, as observed

in Fig. 6. The role of the master is to receive data after the
calculation by workers. Thus, initially (for lesser number of
workers), for interaction matrix generation, master time is
mostly spent waiting for workers to finish the computation.
But with increasing number of workers, the computation
time decreases (i.e., each worker executes lesser number
of calculations) and eventually master is unable to receive
quickly enough all the computed data, thus delaying the
workers who have already finished computing and instead
get queued to send the data. This saturation is absent in the
case of calculation of the field after the relaxation, when each
worker performs large number of summing up operations to
account for contributions from all sub-volumes of the 3D
geometry to the field value at a given point in space. This
is confirmed by the fact that in our tests, the time spent by
a worker on calculation of one element of the interaction
matrix was only 6.6 𝜇s, while the calculation of the magnetic
field after the relaxation by a worker at one observation
point took a much longer time, 22.5 ms. These observations
explain the earlier saturation of the overall speedup curve in
the case of the interaction matrix generation, as compared
to the field calculation after the relaxation.

Scalability of shared memory parallelization when com-
pared to MPI, is weaker, but the resource sharing is better
optimized. Preliminary tests to estimate the parallel per-
formance of the relaxation of interaction matrix yielded a
speedup of approximately 10 times compared to sequential
execution of the code. The estimated overall speedup for the
test geometry is ∼41 when using 400 processes, the extent of
parallelization dependent on the number of field calculations
performed. Further algorithm-specific implementations are
required to reach higher levels of parallelism.

CONCLUSION
The upgraded version of parallel Radia is now available

for the Python interface, and it offers considerable speedups
in different types of 3D magnetostatics computations [5].
Efforts are ongoing to improve its parallel performance in
order to efficiently meet the computation requirements of
the next generation light sources.

REFERENCES
[1] O. Chubar, P. Elleaume, and J. Chavanne, “A three-dimensional

magnetostatics computer code for insertion devices”, J. Syn-
chrotron Radiat., vol. 5, pp. 481-484, 1998.
doi:10.1107/S0909049597013502

[2] P. Elleaume, O. Chubar, and J. Chavanne, “Computing 3D
Magnetic Fields from Insertion Devices”, in Proc. 17th
Particle Accelerator Conf. (PAC’97), Vancouver, Canada,
May 1997, paper 9P027, pp. 3509–3511. doi:10.1109/PAC.
1997.753258

[3] A. Andersson, O. Chubar, and L. J. Lindgren, “3D Calcula-
tions for the MAX II Lattice Magnets”, in Proc. 6th European
Particle Accelerator Conf. (EPAC’98), Stockholm, Sweden,
Jun. 1998, paper THP26F, p. 1207.

[4] O. Chubar, C. Benabderrahmane, J. Chavanne, P. Elleaume,
O. Marcouillé, and F. Marteau, “Application of Finite Volume

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOTK018

MC5: Beam Dynamics and EM Fields

D03: Calculations of EM fields - Theory and Code Developments

MOPOTK018

483

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Integral Approach to Computing of 3D Magnetic Fields Cre-
ated by Distributed Iron-dominated Electromagnet Structures”,
in Proc. 9th European Particle Accelerator Conf. (EPAC’04),
Lucerne, Switzerland, Jul. 2004, paper WEPKF033, pp. 1675-
1677.

[5] Radia, https://github.com/ochubar/Radia

[6] C. Hall et al., “Recent developments to the Radia magneto-
statics code for improved performance and interface”, in The
14th International Conference on Synchrotron Radiation In-
strumentation (SRI 2021), Hamburg, Germany, Apr. 2022.
unpublished.

[7] Gaël Le Bec, Joël Chavanne, Simone Liuzzo, and Simon White,
“Cross talks between storage ring magnets at the Extremely
Brilliant Source at the European Synchrotron Radiation Fa-
cility”, Phys. Rev. Accel. Beams, vol. 24, p. 072401, 2021.
doi:10.1103/PhysRevAccelBeams.24.072401

[8] Sol Ji Kang, Sang Yeon Lee, and Keon Myung Lee, “Per-
formance comparison of OpenMP, MPI, and MapReduce in
practical problems”, Advances In Multimedia, vol. 2015, 2015.
doi:10.1155/2015/575687

[9] William D. Gropp and Ewing Lusk “High-Level Program-
ming in MPI”, in European Parallel Virtual Machine/Mes-
sage Passing Interface Users’ Group Meeting, p. 27, 2003.
doi:10.1007/978-3-540-39924-7_7

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOTK018

MOPOTK018C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

484

MC5: Beam Dynamics and EM Fields

D03: Calculations of EM fields - Theory and Code Developments

