Keyword: beam-loading
Paper Title Other Keywords Page
TUPOMS031 Fill Pattern for Reducing Transient Beam Loading and Ion-Trapping in the Diamond-II Storage Ring cavity, simulation, storage-ring, emittance 1483
 
  • T. Olsson, H.C. Chao
    DLS, Oxfordshire, United Kingdom
 
  The Diamond-II upgrade will replace the existing Diamond storage ring with a multibend achromat lattice providing higher brightness to the users by reducing the emittance and increasing the beam energy. The new storage ring will require a harmonic cavity that lengthens the bunches to increase the Touschek lifetime as well as mitigate instabilities and suppress the emittance blow up from intrabeam scattering. It is expected that the ring will have to operate with gaps in the fill pattern for ion-clearing, but that will lead to transient beam loading resulting in reduced bunch lengthening. The length and occurrence of the gaps therefore have to be determined as a trade-off between the requirements for transient beam loading and ion-trapping. This paper presents simulations of both effects for the Diamond-II storage ring to find an optimal fill pattern.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS031  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOZGD1 Design of an LPA-Based First-Stage Injector for a Synchrotron Light Source electron, plasma, laser, simulation 1639
 
  • X.Y. Shi, H.S. Xu
    IHEP, Beijing, People’s Republic of China
 
  Study of plasma-based acceleration has been a frontier of accelerator community for decades. The beam performance obtained from a laser-plasma based accelerator (LPA) becomes higher and higher. Nowadays, a combination of LPAs and the conventional RF accelerators is a trend. One of the interesting directions to go is to replace a LINAC by an LPA as the first-stage injector of a synchrotron light source. In this paper, we present a physical design of a 500 MeV LPA-based first-stage injector for a synchrotron light source.  
slides icon Slides WEOZGD1 [8.971 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOZGD1  
About • Received ※ 15 June 2022 — Revised ※ 22 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT024 Beam Loading Compensation of Standing Wave Linac with Off-Crest Acceleration positron, cavity, acceleration, klystron 1893
 
  • M. Kuriki, S. Konno, Z.J. Liptak
    HU/AdSM, Higashi-Hiroshima, Japan
  • M.K. Fukuda, T. Omori, Y. Seimiya, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • H. Tajino
    HU ADSE, Hiroshima, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  In E-Driven positron source of ILC, the generated positron is captured by a standing wave cavity. Because the deceleration capture method is employed, the positron is off-crest over the linac. Because the beam-loading is expected to be more than 1A in a multi-bunch format, the compensation is essential to obtain uniform intensity over the pulse. A conventional method for the compensation controlling the timing doesn’t work because RF and Beam induced field are in different phase. In this manuscript, we discuss the compensation with the off-crest acceleration case. A simple phase modulation on the input RF is a solution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT024  
About • Received ※ 20 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)