MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T23: Machine Protection
Paper Title Page
MOPOMS047 Control and Functional Safety Systems Design for Real-Time Conditioning of RF Structures at TEX 751
 
  • S. Pioli, R. Gargana, D. Moriggi
    LNF-INFN, Frascati, Italy
  • F. Cardelli, P. Ciuffetti, C. Di Giulio
    INFN/LNF, Frascati, Italy
 
  We report the status of the development of an High Power RF Laboratory in X-Band called TEX (TEst-stand for X-Band). TEX is part of the LATINO (Laboratory in Advanced Technologies for INnOvation) initiative that is ongoing at the Frascati National Laboratories (LNF) of the Italian Institute for Nuclear Physics (INFN) that covers many different areas focused on particle accelerator technologies. TEX is a RF test facility based on solid-state K400 modulator from ScandiNova with a 50MW class X-band (11.994 GHz) klystron tube model VKX8311A operating at 50 Hz. This RF source will operate as resource for test and research programs such as the RF breakdown on RF waveguide components as well as high power testing of accelerating structures for future high gradient linear accelerator such as EuPRAXIA and CLIC. In this context we will present the whole EPICS control system design focusing on archiving, user interfaces and custom development made as part of the functional safety to deliver real-time RF breakdown detection integrated with the timing system of the facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS047  
About • Received ※ 16 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS048 Fast Trigger System for Beam Abort System in SuperKEKB 754
 
  • H. Ikeda, T. Mimashi, S. Nakamura, T. Oki, S. Sasaki
    KEK, Ibaraki, Japan
 
  In order to protect the hardware components of the de-tector and accelerator from sudden beam loss of high beam currents, the fast beam abort system is developed in the SuperKEKB. The previous abort system was not fast enough for sudden beam loss that caused QCS quench, and it gave a damage to the collimator and the Belle-II detector. A fast abort system is required to pre-venting such damage. The abort system consists of sev-eral sensors that generate interlock signal (the loss moni-tor, dose in the Bell-II detector, and the magnet failure etc.), optical cable system to transfer the interlock signal to central control room (CCR), the abort trigger signal generation system and the abort kicker. To reduce total time, we reduce transmission time from local control room to CCR by changing signal cable route. Since the interlock signal produced by magnet power supply was slow, we modified the magnet power supply. For more quick generation of abort trigger signal, we increased number of the abort gap. By these improvements, an average abort time is reduced from 31µsec to 25µsec. This improvement looks small, but it brought preventing the serious radiation damage to many hardware compo-nents. Detail of the system and result is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS048  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)