Author: Zimmaro, A.
Paper Title Page
MOPOMS044 Implications and Mitigation of Radiation Effects on the CERN SPS Operation during 2021 740
 
  • Y.Q. Aguiar, A. Apollonio, K. Biłko, M. Brucoli, M. Cecchetto, S. Danzeca, R. García Alía, T. Ladzinski, G. Lerner, J.B. Potoine, A. Zimmaro
    CERN, Meyrin, Switzerland
 
  During the Long Shutdown 2 (LS2, 2019-2020), the CERN accelerator complex has undergone major upgrades, mainly in preparation for the High-Luminosity (HL) LHC era, the ultimate capacity for its physics production. Therefore, several novel equipment and systems were designed and deployed throughout the accelerator complex. To comply with the radiation level specifications and avoid machine downtime due to radiation effects, the electronics systems exposed to radiation need to follow Radiation Hardness Assurance (RHA) methodologies developed and validated by the Radiation to Electronics (R2E) project at CERN. However, the establishment of such procedures is not yet fully implemented in the LHC injector chain, and some R2E failures were detected in the SPS during the 2021 operation. This work is devoted to describing and analysing the R2E failures and their impact on operation, in the context of the related radiation levels and equipment sensitivity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS044  
About • Received ※ 07 June 2022 — Revised ※ 21 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOXGD2 Wireless IoT in Particle Accelerators: A Proof of Concept with the IoT Radiation Monitor at CERN 772
 
  • S. Danzeca, A.J. Cass, A. Masi, R. Sierra, A. Zimmaro
    CERN, Meyrin, Switzerland
 
  The Internet of Things (IoT) is an ecosystem of web-enabled "smart devices" that integrates sensors and communication hardware to collect, send and act on data acquired from the surrounding environment. Use of the IoT in particle accelerators is not new, with accelerator systems long having been connected to the network to retrieve, send and analyse data. What has been missing is the IoT concept of "smart devices" and above all wireless connectivity. We report here on the advantages of using a particular IoT technology, LoRa, for the deployment of wireless radiation monitors within the CERN particle accelerator complex. IoT Radiation Monitors have been developed as a result of growing demand for radiation measurements where standard infrastructure is not available. As a radiation-tolerant device, the IoT Radiation Monitor is a powerful "eye" for observing the real-time radiation levels in the CERN accelerators. We describe here the technologies used for the project and the various advantages their deployment offers in a particle accelerator environment. This opens up the possibility for the deployment of heterogeneous implementations that would otherwise have been impractical.  
slides icon Slides TUOXGD2 [5.797 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXGD2  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)