Paper | Title | Page |
---|---|---|
MOPOST009 | EIC Crab Cavity Multipole Analysis and Their Effects on Dynamic Aperture | 66 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Crab cavity is essential for retrieving the loss in luminosity due to the large crossing angle in the two colliding beam lines of the Electron Ion Collider (EIC). Due to the asymmetric design of the proton beam crab cavity, the fundamental mode consists of contributions from higher order multipoles. These multipole modes may change during fabrication and installation of the cavities, and therefore affect the local dynamic aperture. Thresholds for each order of the multipoles are applied to ensure dynamic aperture requirements at these crab cavities. In this paper, we analyzed the strength of the multipoles due to fabrication and installation accuracies, and set limitations to each procedure to maintain the dynamic aperture requirement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST009 | |
About • | Received ※ 06 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 10 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEIXGD1 | EIC Beam Dynamics Challenges | 1576 |
|
||
The Electron Ion Collider aims to produce luminosities of 1034 cm-2s-1 . The machine will operate over a broad range of collision energies with highly polarized beams. The coexistence of highly radiative electrons and nonradiative ions produce a host of unique effects. Strong hadron cooling will be employed for the final factor of 3 luminosity boost. | ||
![]() |
Slides WEIXGD1 [3.952 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXGD1 | |
About • | Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 14 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT044 | Electron-Ion Collider Design Status | 1954 |
|
||
Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044 | |
About • | Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |