Author: Williams, O.
Paper Title Page
MOPOMS023 Start-to-End Beam-Dynamics Simulations of a Compact C-Band Electron Beam Source for High Spectral Brilliance Applications 687
 
  • L. Faillace, M. Behtouei, B. Spataro, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • R.B. Agustsson, I.I. Gadjev, S.V. Kutsaev, A.Y. Murokh
    RadiaBeam, Marina del Rey, California, USA
  • F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
  • O. Camacho, A. Fukasawa, N. Majernik, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
  • A. Giribono
    INFN/LNF, Frascati, Italy
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work is partially supported by DARPA under the Contract No. HR001120C0072, by DOE Contract DE-SC0009914, DOE Contract DE-SC0020409, and by the National Science Foundation Grant No. PHY-1549132.
Proposals for new linear accelerator-based facilities are flourishing world-wide with the aim of high spectral brilliance radiation sources. Most of these accelerators are based on electron beams, with a variety of applications in industry, research and medicine such as colliders, free-electron lasers, wake-field accelerators, coherent THz and inverse Compton scattering X/’ sources as well as high-resolution diagnostics tools in biomedical science. In order to obtain high-quality electron beams in a small footprint, we present the optimization design of a C-band linear accelerator machine. Driven by a novel compact C-band hybrid photoinjector, it will yield ultra-short electron bunches of few 100’s pC directly from injection with ultra-low emittance, fraction of mm-mrad, and a few hundred fs length simultaneously, therefore satisfying full 6D emittance compensation. The normal-conducting linacs are based on a novel high-efficiency design with gradients up to 50 MV/m. The beam maximum energy can be easily adjusted in the mid-GeV’s range. In this paper, we discuss the start-to-end beam-dynamics simulations in details.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS023  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT035 Introduction of Westwood Linear Accelerator Test Facility in University of California Los Angeles 1085
 
  • Y. Sakai, G. Andonian, O. Camacho, A. Fukasawa, G.E. Lawler, N. Majernik, P. Manwani, B. Naranjo, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
 
  Funding: U.S. DOE: DE-SC0009914 U.S. DOD: DARPA GRIT Contract 20204571 U.S. DOE: DE-SC0020409 - Cryo RF
An electron linear accelerator test facility located on UCLA’s southwest campus in Westwood, SAMURAI, is presently being constructed. A RF-based accelerator consists of a compact, 3 MeV S-band hybrid gun capable of velocity bunching to bunch lengths in the 100s fs range with 100s pC of charge. This beam is accelerated by an 1.5 m S-band linac with a peak output energy of 30 MeV which can be directed to either a secondary beamline or remain on the main beamline for final acceleration by a SLAC 3 m S-band linac to an energy of 80 MeV. Further acceleration by advanced boosters such as a cryo-cooled C-band structure or numerous optical or wakefield methods is under active investigation. In combination with a 3 TW Ti:Sapphire laser, initial proof of principle experiments will be conducted on topics including the ultra-compact x-ray free-electron laser, advanced dielectric wakefield acceleration, bi-harmonic nonlinear inverse Compton scattering, and various radiation detectors. Furthermore, development of a tertiary beamline based on an ultra low emittance, cryo-cooled gun will eventually enable two-beam experiments, expanding the facility’s unique experimental capabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT035  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)