Author: Whiteford, C.
Paper Title Page
MOPOTK067 High-Charge Transmission Diagnostics for Beam-Driven RF Structures 618
 
  • E.E. Wisniewski, G. Chen, D.S. Doran, S.Y. Kim, W. Liu, X. Lu, J.G. Power, C. Whiteford
    ANL, Lemont, Illinois, USA
  • X. Lu, D.C. Merenich
    Northern Illinois University, DeKalb, Illinois, USA
  • F. Stulle
    BERGOZ Instrumentation, Saint Genis Pouilly, France
  • E.E. Wisniewski
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: U.S. Department of Energy Office of Science Contract No. DE-AC02-06CH11357.
The Argonne Wakefield Accelerator group (AWA) has been using high Charge bunch-trains (>450 nC) for structure wakefield RF power generation and high power testing (100 s of MW) for many years. These experiments involve fast beam-tuning for high charge transmission through small aperture wakefield structures over a large range of charge levels. The success of these experiments depends on real-time, non-destructive, fast charge measurements with devices that are robust in the high-charge and high-powered RF environment. AWA uses Bergoz Integrating Charge Transformers (ICT) which are ideal for these critical charge measurements. The devices used, the method developed and its application are detailed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK067  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS014 Commissioning of a High-Gradient X-Band RF Gun Powered by Short RF Pulses from a Wakefield Accelerator 652
SUSPMF040   use link to see paper's listing under its alternate paper code  
 
  • W.H. Tan, X. Lu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.P. Antipov, C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, G. Ha, C.-J. Jing, W. Liu, X. Lu, P. Piot, P. Piot, J.G. Power, J. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No DE-SC0018709 at Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A high-gradient X-band (11.7-GHz) photoinjector developed by Euclid Techlabs, was recently commissioned at the Argonne Wakefield Accelerator (AWA). The system comprises a 1+1/2-cell RF gun powered by short RF pulses generated as a train of high-charge bunches from the AWA accelerator passes through a slow-wave power extraction and transfer structure. The RF photoinjector was reliably operating with electric fields in excess of 300 MV/m on the photocathode surface free of breakdown and with an insignificant dark-current level. We report on the RF-gun setup, commissioning, and the associated beam generation via photoemission.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS014  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROXSP2 Demonstration of Gradient Above 300 MV/m in Short Pulse Regime Using an X-Band Single-Cell Structure 3134
 
  • J.H. Shao, D.S. Doran, G. Ha, C.-J. Jing, W. Liu, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • H.B. Chen, X. Lin, M.M. Peng, J. Shi, H. Zha
    TUB, Beijing, People’s Republic of China
  • C. Jing
    Euclid Beamlabs, Bolingbrook, USA
 
  High gradient acceleration is one of the critical technologies required by future linear colliders, free-electron lasers, and compact linac-based applications. Among decade long effort to break state-of-the-art gradient limitation of ~100 MV/m in normal conducting structures, using RF pulses shorter than 20 ns is a promising approach based on theoretic analysis and experimental observation. In this study, we demonstrated high gradient above 300 MV/m using an X-band 11.7 GHz single-cell travelling-wave structure with 6 ns FWHM RF pulses generated by a power extractor. In comparison, a scaled 11.424 GHz structure only reached below 150 MV/m driven by 30-100 ns RF pulses from a klystron with pulse compression. The experimental results and the suggested new mechanism of beam acceleration in the Breakdown Insensitive Acceleration Regime (BIAR) are presented in this manuscript.  
slides icon Slides FROXSP2 [8.998 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FROXSP2  
About • Received ※ 11 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)