Author: Waagaard, E.
Paper Title Page
TUPOST045 Overview of the Machine Learning and Numerical Optimiser Applications on Beam Transfer Systems for LHC and Its Injectors 961
 
  • F.M. Velotti, M.J. Barnes, E. Carlier, Y. Dutheil, M.A. Fraser, B. Goddard, N. Magnin, R.L. Ramjiawan, E. Renner, P. Van Trappen
    CERN, Meyrin, Switzerland
  • E. Waagaard
    Uppsala University, Uppsala, Sweden
 
  Machine learning and numerical optimisation algorithms are getting more and more popular in the accelerator physics community and, thanks to the computing power available, their application in daily operation more likely. In the CERN accelerator complex, and specifically on the beam transfer systems, many promising exploitation of these numerical tools have been put in place in the last years. Some of the state-of-the-art machine learning models have been explored and used to solve problems that were never fully addressed in the past. In this paper, the most recent results of application of machine learning and numerical optimisation for injection, extraction and transfer of beam from machine and to experimental areas are presented. An overview of the possible next steps and shortcomings is finally discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST045  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT058 A Response Matrix Approach to Skew-Sextupole Correction in the LHC at Injection 1987
 
  • E. Waagaard
    Uppsala University, Uppsala, Sweden
  • E.H. Maclean
    CERN, Meyrin, Switzerland
 
  To date, no dedicated attempt has been made to correct skew-sextupole resonances in the LHC at injection. Recently this topic has gained interest however, following the investigation for the emittance growth generation during the LHC energy ramp, due to third order islands. The LHC is equipped with skew-sextupole correctors in the experimental insertions (MCSSX), intended for local compensation at top energy, and with several families of skew sextupole magnets in the arcs (MSS), which are intended for chromatic coupling compensation at top energy but are not optimally placed for resonance compensation. Simulation studies were performed in MAD-X and PTC to assess whether the MSS and MCSSX correctors could be used to compensate skew-sextupole RDTs in the LHC at injection via a response matrix approach, based on measured values at the LHC BPMs. It was found that compensation was viable, but at the cost of significantly increased corrector strength compared to chromatic coupling compensation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT058  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)