Author: Vossberg, M.
Paper Title Page
MOPOST012 High Current Heavy Ion Beam Investigations at GSI-UNILAC 78
 
  • H. Vormann, W.A. Barth, M. Miski-Oglu, U. Scheeler, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
 
  The GSI Universal Linear Accelerator UNILAC and the synchrotron SIS18 will serve as injector for the upcoming FAIR-facility. The UNILAC-High Current Injector will be improved and modernized until FAIR is commissioned and the Alvarez poststripper accelerator is replaced. The reference heavy ion for future FAIR-operation is uranium, with highest intensity requirements. To re-establish uranium beam operation and to improve high current beam operation, different subjects have been explored in dedicated machine investigation campaigns. After a beam line modification in 2017 the RFQ-performance had deteriorated significantly; new rods have been installed and the RF-working point has been redefined. Also the Superlens-performance had become unsatisfactory; improved with a modified RF-coupler. With a pulsed hydrogen gas stripper target the uranium beam stripping efficiency could be increased by 65%. Various work has already been carried out to establish this stripper device in routine operation. With medium heavy ion beams a very high beam brilliance at the end of transfer line to SIS18 was achieved. Results of the measurement campaigns and the UNILAC upgrade activities will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST012  
About • Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS041 High Power RF-Cavity Development for the HBS-Driver LINAC 1516
 
  • M. Basten, K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • T. Gutberlet
    JCNS, Jülich, Germany
  • H. Podlech
    IAP, Frankfurt am Main, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Neutron research in Europe is mainly based on various nuclear reactors that will be successively decommissioned over the next years. This means that despite the commissioning of the European Spallation Source ESS, many neutron research centres, especially in the medium flux regime, will disappear. In response to this situation, the Jülich Centre for Neutron Science (JCNS) has begun the development of a scalable, compact, accelerator-based High Brilliance neutron Source (HBS). A total of three different neutron target stations are planned, which can be operated with a 100 mA proton beam of up to 70 MeV and a duty cycle of up to 6%. The driver Linac consists of an Electron Cyclotron Resonance (ECR) ion source followed by a LEBT section, a 2.5 MeV double Radio-Frequency Quadrupole (RFQ) and 35 normal conducting (NC) Crossbar H-Mode (CH) cavities. The development of the cavities is carried out by the Institute for Applied Physics (IAP) at the Goethe University Frankfurt am Main. Due to the high beam current, all cavities as well as the associated tuners and couplers have to be optimised for operation under high thermal load to ensure safe operation. In collaboration with the GSI Centre for Heavy Ion Research as the ideal test facility for high power tests, two cavities and the associated hardware are being designed and will be tested. The design and latest status of both cavities will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS041  
About • Received ※ 18 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)