Author: Terunuma, N.
Paper Title Page
MOPOTK043 Wakefield Effects Evaluation on Nanometer Small Beam at KEK-ATF 556
SUSPMF052   use link to see paper's listing under its alternate paper code  
 
  • Y. Abe, K. Kubo, T. Okugi, N. Terunuma
    Sokendai, Ibaraki, Japan
  • K. Kubo, T. Okugi, N. Terunuma
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by JST, the establishment of university fellowships towards the creation of science technology innovation, Grant Number JPMJFS2136. This work was also supported by JST SPRING, Grant Number SDP221102.
Accelerator Test Facility (ATF) is R&D facility to evaluate final focus technology for small beam required by ILC. The final focus beamline(ATF2) sets the goal to achieve 37 nm vertical beam size and 41 nm beam size had been demonstrated. Moreover, a significant intensity dependence on a nanometer beam size was observed and several studies of the wakefield had been conducted [*,**,***]. ATF2 is a proper beamline for wakefield studies with low emittance beam and nanometer resolution cavity BPMs and a nanometer beam size monitor. The simulation results were qualitatively cross-checked with experimental results and showed that the effects of some vacuum components and BPMs were significant. Further analysis of the wakefield will be done for flexible components (e.g. bellows). An upgrade of the ATF2 beamline is proposed by including minimization of the wakefield sources, to establish technologies for stable nanometer beam.
*J.Snuverink et al., PHYS. REV.ACCEL. BEAMS19, 091002.
**T.Okugi et al., PASJ16, FRPI023, 2019.
***P.Korysko et al., PHYS. REV.ACCEL. BEAMS23, 121004.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK043  
About • Received ※ 20 May 2022 — Revised ※ 16 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT066 KEK LUCX Facility Laser-to-RF&RF-to-RF Stability Study and Optimization 1167
SUSPMF098   use link to see paper's listing under its alternate paper code  
 
  • K. Popov
    Sokendai, Ibaraki, Japan
  • A. Aryshev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  KEK LUCX facility* is a linear accelerator devoted to the beam instrumentation R&Ds for present and future accelerator systems and colliders including ILC. According to the ILC TDR**, it is necessary to achieve RF-gun Laser-to-RF&RF-to-RF phase stability of 0.35°(RMS) and amplitude stability of 0.07%(RMS) with implementation of the Digital LLRF feedback based on commercially available FPGA board and digital trigger system. As the first step to achieve ILC stability level at KEK-LUCX facility, present Laser-to-RF&RF-to-RF phase and amplitude jitters were measured using time- and frequency-domain techniques. After that, jitter influence on beam parameters after RF-gun and main solenoid magnet was simulated with ASTRA tracking code*** and results were cross-checked during LUCX facility beam operation. Finally, stable digital trigger system and digital LLRF feedback based on SINAP EVG&EVR and RedPitaya SIGNALlab-250 modules were implemented. This report demonstrates the results of Laser-to-RF&RF-to-RF phase and amplitude jitter measurements cross-checked with ASTRA simulation and real beam parameters measurements before and after LUCX facility stabilization.
References
*A. Aryshev et al., Appl. Phys. Lett. 111, 033508 (2017).
**International Linear Collider Reference Design Report, ILC-REPORT-2007-001, 2007.
***https://www.desy.de/~mpyflo/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT066  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)