Author: Tarazona, D.A.
Paper Title Page
MOPLXGD3 The Accelerator and Beam Physics of the Muon g-2 Experiment at Fermilab 10
 
  • D.A. Tarazona
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The physics case of the Muon g-2 Experiment at Fermilab is outstanding and has recently attracted significant attention from its first official results. Although its measurements involve high energy physics methods, such as counting positron production rates with the use of calorimeters and beam diagnostics with tracking detectors, this experiment is strongly bound to accelerator and beam physics. This paper reviews the principles of the experiment and the details necessary to provide a solid ground for the beam-dynamics uncertainties and the corrections of the systematic effects influencing the output of the experiment: a single numerical value, which may unveil new physics.  
slides icon Slides MOPLXGD3 [29.311 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPLXGD3  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK035 Beam-Based Diagnostics of Electric Guide Fields and Lattice Parameters for Run-1 of the Muon g-2 Storage Ring at Fermilab 531
 
  • D.A. Tarazona, M. Berz, K. Makino
    MSU, East Lansing, Michigan, USA
  • J.D. Crnkovic, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • K.S. Khaw
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • J. Mott
    BUphy, Boston, Massachusetts, USA
  • J. Price
    The University of Liverpool, Liverpool, United Kingdom
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • D.A. Tarazona
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Tishchenko
    BNL, Upton, New York, USA
 
  Funding: Fermi National Accelerator Laboratory (Fermilab) resources, a US DoE, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance under Contract No. DE-AC02-07CH11359.
A portion of the Muon g-2 Storage Ring electric system, which provides vertical beam focusing, exhibited an unexpected time dependence that produced a characteristic evolution of the stored beam during Run-1 of the Muon g-2 Experiment at Fermilab (E989). A method to reconstruct the Run-1 electric guide fields has been developed, which is based on a numerical model of the muon storage ring and optimization algorithms supported by COSY INFINITY. This method takes beam profile measurements from the Muon g-2 straw tracking detectors as input, and it produces a full reconstruction of the time-dependent fields. The fields can then be used for the reproduction of detailed beam tracking simulations and the calculation of ring lattice parameters for acceptance studies and systematic error evaluations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK035  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)