Author: Snedden, E.W.
Paper Title Page
THPOPT015 The Design of the Full Energy Beam Exploitation (FEBE) Beamline on CLARA 2594
 
  • A.R. Bainbridge, D. Angal-Kalinin, J.K. Jones, T.H. Pacey, Y.M. Saveliev, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA facility at Daresbury Laboratory was orig-inally designed for the study of novel FEL physics utilis-ing high-quality electron bunches at up to 250 MeV/c. To maximise the exploitation of the accelerator complex, a dedicated full energy beam exploitation (FEBE) beam-line has been designed and is currently being installed in a separate vault on the CLARA accelerator. FEBE will allow the use of high charge (up to 250 pC), moderate energy (up to 250 MeV), electron bunches for a wide variety of accelerator applications critical to ongoing accelerator development in the UK and international communities. The facility consists of a shielded enclo-sure, accessible during beam running in CLARA, with two very large experimental chambers compatible with a wide range of experimental proposals. High-power laser beams (up to 100 TW) will be available for electron-beam interactions in the first chamber, and there are concrete plans for a wide variety of advanced diagnostics (includ-ing a high-field permanent magnet spectrometer and dielectric longitudinal streaker), essential for multiple experimental paradigms, in the second chamber. FEBE will be commissioned in 2024.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT015  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK061 Machine Learning Approach to Temporal Pulse Shaping for the Photoinjector Laser at CLARA 2917
 
  • A.E. Pollard, D.J. Dunning, W.A. Okell, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The temporal profile of the electron bunch is of critical importance in accelerator areas such as free-electron lasers and novel acceleration. In FELs, it strongly influences factors including efficiency and the profile of the photon pulse generated for user experiments, while in novel acceleration techniques it contributes to enhanced interaction of the witness beam with the driving electric field. Work is in progress at the CLARA facility at Daresbury Laboratory on temporal shaping of the ultraviolet photoinjector laser, using a fused-silica acousto-optic modulator. Generating a user-defined (programmable) time-domain target profile requires finding the corresponding spectral phase configuration of the shaper; this is a non-trivial problem for complex pulse shapes. Physically informed machine learning models have shown great promise in learning complex relationships in physical systems, and so we apply machine learning techniques here to learn the relationships between the spectral phase and the target temporal intensity profiles. Our machine learning model extends the range of available photoinjector laser pulse shapes by allowing users to achieve physically realisable configurations for arbitrary temporal pulse shapes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK061  
About • Received ※ 30 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)