Author: Seidel, M.
Paper Title Page
WEPOTK018 Simulation of Heavy-Ion Beam Losses with Crystal Collimation* 2082
SUSPMF048   use link to see paper's listing under its alternate paper code  
 
  • R. Cai, R. Bruce, R. Bruce, M. D’Andrea, L.S. Esposito, P.D. Hermes, A. Lechner, A. Lechner, D. Mirarchi, J.B. Potoine, S. Redaelli, F. Salvat Pujol, J. Schoofs
    CERN, Meyrin, Switzerland
  • J.B. Potoine
    IES, Montpellier, France
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  With the higher stored energy envisioned for future heavy-ion runs in the LHC and the challenging fragmentation aspect of heavy-ion beams due to interaction with collimator material, the need arises for even more performing collimation systems. One promising solution is crystal channeling, which is used in the HL-LHC baseline and starts with Run III for heavy-ion collimation. To investigate an optimal configuration for the collimation system, a well-tested simulation setup is required. This work shows the simulations of channeling and other coherent effects in the SixTrack-FLUKA Coupling simulation framework and compares simulated loss patterns with data from previous beam tests.
*Research supported by the HL’LHC project
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK018  
About • Received ※ 07 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS023 Design of the 590 MeV Proton Beamline for the Proposed TATTOOS Isotope Production Target at PSI 3000
SUSPMF126   use link to see paper's listing under its alternate paper code  
 
  • M. Hartmann, D.C. Kiselev, D. Reggiani, M. Seidel, J. Snuverink, H. Zhang
    PSI, Villigen PSI, Switzerland
 
  IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technologies) is a proposed initiative envisaged for the high-intensity proton accelerator facility (HIPA) at the Paul Scherrer Institute (PSI). As part of IMPACT, a radioisotope target station, TATTOOS (Targeted Alpha Tumour Therapy and Other Oncological Solutions) will allow the production of terbium radionuclides for therapeutic and diagnostic purposes. The proposed TATTOOS beamline and target will be located near the UCN (Ultra Cold Neutron source) target area, branching off from the main UCN beamline. In particular, the beamline is intended to operate at a beam intensity of 100 µA, requiring a continuous splitting of the main beam via an electrostatic splitter. Realistic beam loss simulations to verify safe operation have been performed and optimised using Beam Delivery Simulation (BDSIM), a Geant4 based tool enabling the simulation of beam transportation through magnets and particle passage through the accelerator. In this study, beam profiles, beam transmission and power deposits are generated and studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS023  
About • Received ※ 18 May 2022 — Revised ※ 31 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRPLYGD1 Towards Efficient Particle Accelerators - A Review 3141
 
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  Sustainability has become an important aspect of all human activities, and also for accelerator driven research infrastructures. For new facilities it is mandatory to optimize power consumption and overall sustainability. This presentation will give an overview of the power efficiency of accelerator concepts and relevant technologies. Conceptual aspects will be discussed for proton driver accelerators, light sources and particle colliders. Several accelerator technologies are particularly relevant for power efficiency. These are utilized across the various facility concepts and include superconducting RF and cryogenic systems, RF sources, energy efficient magnets, conventional cooling and heat recovery. Power efficiency has been a topic in the European programs EUCARD-2, ARIES and the ongoing I.FAST project and the documentation of these programs is a related source of information.  
slides icon Slides FRPLYGD1 [4.531 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FRPLYGD1  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)