Author: Schwarz, M.
Paper Title Page
MOPOST015 Beam Dynamics Simulations for the Superconducting HELIAC CW Linac at GSI 86
 
  • M. Schwarz, T. Conrad, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, F.D. Dziuba, S. Lauber, J. List
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, A. Rubin, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth
    KPH, Mainz, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Funding: Work supported by the German Federal Ministry of Education and Research (BMBF, contract no. 05P21RFRB2)
The superconducting (SC) continuous wave (CW) heavy ion linac HELIAC (HElm\-holtz LInear ACcelerator) is a common project of GSI and HIM under key support of IAP Frankfurt. It is intended for future experiments with heavy ions near the Coulomb barrier within super-heavy element (SHE) research and aims at developing a linac with multiple CH cavities as key components downstream the High Charge State Injector (HLI) at GSI. The design is challenging due to the requirement of intense beams in CW mode up to a mass-to-charge ratio of 6, while covering a broad output energy range from 3.5 to 7.3 MeV/u with minimum energy spread. In 2017 the first superconducting cavity of the linac has been successfully commissioned and extensively tested with beam at GSI. In the light of experience gained in this research so far, the beam dynamics layout for the entire linac has been updated and optimized in the meantime. This contribution will provide a brief overview of the recent progress on the project, as well as a potential modification to the linac layout.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST015  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 03 July 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST016 Proton Linac Design for the High Brilliance Neutron Source HBS 90
 
  • M. Schwarz, M. Droba, K. Kümpel, S. Lamprecht, O. Meusel, N.F. Petry, H. Podlech
    IAP, Frankfurt am Main, Germany
  • J. Baggemann, Th. Brückel, T. Gutberlet, E. Mauerhofer, U. Rücker, A. Schwab, P. Zakalek
    JCNS, Jülich, Germany
  • J. Li
    IEK, Jülich, Germany
  • C. Zhang
    GSI, Darmstadt, Germany
 
  Due to the decommissioning of several reactors, only about half of the neutrons will be available for research in Europe in the next decade despite the commissioning of the ESS. High-Current Accelerator-driven Neutron Sources (HiCANS) could fill this gap. The High Brilliance Neutron Source (HBS) currently under development at Forschungszentrum Jülich is scalable in terms of beam energy and power due to its modular design. The driver linac will accelerate a 100 mA proton beam to 70 MeV. The linac is operated with a beam duty cycle of up to 13.6 % (15.3 % RF duty cycle) and can simultaneously deliver three pulse lengths (208 µs, 833 µs and 2 ms) for three neutron target stations. In order to minimize the development effort and the technological risk, state-of-the-art technology of the MYRRHA injector is used. The HBS linac consists of a front end (ECR source, LEBT, 2.5 MeV double RFQ) and a CH-DTL section with 44 room temperature CH-cavities. All RF structures are operated at 176.1 MHz and are designed for high duty cycle. Solid-state amplifiers up to 500 kW are used as RF drivers. Due to the beam current and the high average beam power of up to 952 kW, particular attention is paid to beam dynamics. In order to minimize beam losses, a quasi-periodic lattice with constant negative phase is used. This paper describes the conceptual design and the challenges of a modern high-power and high-current proton accelerator with high reliability and availability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST016  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK008 Cavity Designs for the Ch3 to Ch11 and Bellow Tuner Investigation of the Superconducting Heavy Ion Accelerator Heliac 1204
SUSPMF104   use link to see paper's listing under its alternate paper code  
 
  • T. Conrad, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Basten, F.D. Dziuba, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  New CH-DTL cavities designs of the planned Helmholtz Linear Accelerator (HELIAC) are developed in collaboration of HIM, GSI and IAP Frankfurt. The linac, operated in cw-mode with a final energy of 7.3 MeV/u, is intended for various experiments, in particular with heavy ions at energies close to the Coulomb barrier for research on SHE. Twelve sc CH cavities are foreseen, divided into four different cryostats. Each cavity will be equipped with dynamic bellow tuner. After successful beam tests with CH0, CH3 to CH11 are being designed. Based on the experience gained so far, optimization will be made, which will lead to both an increase in performance in terms of reducing the peak fields limiting superconductivity and a reduction in manufacturing costs and time. In order to optimize manufacturing, attention was paid to design many parts of the cavity, such as lids, spokes, tuner and helium shell, with the same geometrical dimensions. In addition, a tuner test rig was developed, which will be used to investigate the mechanical properties of the bellow tuner. For this purpose, different simulations were made in order to realize conditions as close as possible to reality in the test rig.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK008  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS042 Cavity R&D for HBS Accelerator 1520
 
  • N.F. Petry, K. Kümpel, S. Lamprecht, O. Meusel, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The demand for neutrons of various types for research is growing day by day worldwide. To meet the growing demand the Jülich High Brilliance Neutron Source (HBS) is in development. It is based on a high power linear proton accelerator with an end energy of 70 MeV and a proton beam current of 100 mA. After the injector and the MEBT is the main part of the accelerator, which consists of about 36 CH-type cavities. The design of the CH-type cavities will be optimized in terms of required power, required cooling and reliability and the recent results will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS042  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)