Paper | Title | Page |
---|---|---|
MOPOST025 | Influences of the Transverse Motions of the Particles to the Recombination Rate of a Co-Propagating Electron-Ion System | 112 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. For a system with the ion beam co-propagating with the electron beam, such as a traditional electron cooler or a Coherent electron Cooler (CeC), the recombination rate is an important observable for matching the energy of the electrons with the ions. In this work, we have developed the analytical expressions to investigate how the recombination rate depends on the energy difference of the two beams, with the influences from the transverse motions of the particles being considered. The analytical results are then used to analyze the measured recombination data collected during the CeC experiment in run 21 and run 22. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST025 | |
About • | Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEOYGD2 |
Results of the Coherent Electron Cooling Experiment at RHIC | |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Coherent electron Cooling (CeC) experiment aims on demonstrating cooling during this RHIC run, which will be concluded in April 2022. In this talk we will present results of the CeC experiment with special focus won the use and the control of the broad-band micro-bunching Plasma Cascade Amplifier with bandwidth of 15 THz. We will also discuss connection of this experiment with the developing the CeC cooler for future Electron Ion Collider. |
||
![]() |
Slides WEOYGD2 [18.592 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT032 | Summary of the 3-year Beam Energy Scan II operation at RHIC | 1908 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Beam Energy Scan phase II (BES-II) operation in the Relativistic Heavy Ion Collider (RHIC), aiming to explore the phase transition between quark-gluon plasma (QGP) and hadronic gas, exceeded the goal of a four-fold increase in the average luminosity over the range of five gold beam energies (9.8, 7.3, 5.75, 4.59 and 3.85 GeV/nucleon) compared to those achieved during Beam Energy Scan phase I (BES-I). We will present the achievements in BES-II together with a summary of the measures taken to improve RHIC performance in the presence of several beam dynamics effects, and details on improvements made during the operation at 3.85 GeV/nucleon in 2021. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT032 | |
About • | Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOPT033 | Report of RHIC Beam Operation in 2021 | 1912 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The first priority of RHIC operation in 2021 was the Au+Au collisions at 3.85 GeV/nucleon, which is the lowest energy to complete the 3-year Beam Energy Scan II physics program, with RF-based electron cooling. In addition, RHIC also operated for several other physics programs including fixed target experiments, O+O at 100 GeV/nucleon, Au+Au at 8.65 GeV/nucleon, and d+Au at 100 GeV/nucleon. This report presents the operational experience and the results from RHIC operation in 2021. With Au+Au collisions at 3.85 GeV/nucleon reported in a separate report, this paper focuses on the operation conditions for the other programs mentioned above. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT033 | |
About • | Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |