Paper | Title | Page |
---|---|---|
MOPOST037 | Characterisation of Bunch-by-Bunch Tune Shift Effects in the CERN SPS | 148 |
|
||
After the implementation of major upgrades as part of the LHC Injector Upgrade Project (LIU), the Super Proton Synchrotron (SPS) delivers high intensity bunch trains with 25 ns bunch spacing to the Large Hadron Collider (LHC) at CERN. These beams are exposed to several collective effects in the SPS, such as beam coupling impedance, space charge and electron cloud, leading to relatively large bunch-by-bunch coherent and incoherent tune shifts. Tune correction to the nominal values at injection is crucial to ensure beam stability and good beam transmission. During the beam commissioning of the SPS, measurements of the bunch-by-bunch coherent tune shifts have been conducted under different beam conditions, together with appropriate corrections of the average tunes at each injection. In this paper, we describe the methodology that has been developed to acquire bunch-by-bunch position data and to perform online computations of the coherent tune spectra of each bunch using refined Fourier transform analysis. The experimental data are compared to multiparticle tracking simulations using the SPS impedance model, in view of developing an accurate model for tune correction in the SPS. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST037 | |
About • | Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEIYGD1 | Achievements and Performance Prospects of the Upgraded LHC Injectors | 1610 |
|
||
To provide HL-LHC performance, the CERN LHC injector chain underwent a major upgrade during an almost 2-year-long shutdown. In the first half of 2021 the injectors were gradually re-started with the aim to reach at least pre-shutdown parameters for LHC as well as for fixed target beams. The strategy of the commissioning across the complex, a summary of the many challenges and finally the achievements will be presented. Several lessons were learned and have been integrated to define the strategy for the performance ramp-up over the coming years. Remaining limitations and prospects for LHC beam parameters at the exit of the LHC injector chain in the years to come will be discussed. Finally, the emerging need for improved operability of the CERN complex will be addressed, with a description of the first efforts to meet the availability and flexibility requirements of the HL-LHC era while at the same time maximizing fixed target physics output. | ||
![]() |
Slides WEIYGD1 [5.905 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIYGD1 | |
About • | Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |