Author: Lin, F.
Paper Title Page
MOPOTK012 Concept of a Polarized Positron Source for CEBAF 457
SUSPMF058   use link to see paper's listing under its alternate paper code  
 
  • S.H. Habet, R.M. Bodenstein, S.A. Bogacz, J.M. Grames, A.S. Hofler, R. Kazimi, F. Lin, M. Poelker, Y. Roblin, A. Seryi, R. Suleiman, A.V. Sy, D.L. Turner
    JLab, Newport News, Virginia, USA
  • A. Ushakov
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • C.A. Valerio-Lizárraga
    ECFM-UAS, Culiacan, Sinaloa, Mexico
  • E.J-M. Voutier
    LPSC, Grenoble Cedex, France
 
  Funding: Laboratoire de Physique des 2 Infinis Irène Joliot-Curie Université Paris-Saclay -> Eric Voutier : eric.voutier@ijclab.in2p3.fr.
Positron beams would provide new and meaningful probes for the experimental program at the Thomas Jefferson National Accelerator Facility (JLab), including but not limited to future hadronic physics and dark matter experiments. Critical requirements involve generating positron beams with a high degree of spin polarization, sufficient intensity and a continuous-wave (CW) bunch train compatible with acceleration to 12 GeV at the Continuous Electron Beam Accelerator Facility (CEBAF). To address these requirements, a polarized positron injector based upon the bremsstrahlung of an intense CW spin polarized electron beam is considered*. First a polarized electron beam line provides >1 mA of polarized electrons at ~120 MeV to a high-power target for positron production. Next, a second beam line collects, shapes and aligns the spin of positrons for users. Finally, the positron beam is matched into the CEBAF acceptance for acceleration and transport to the end stations with energies up to 12 GeV. An optimized layout to provide positrons beams with intensity >100 nA (polarized) or intensity >3 µA (unpolarized) will be discussed in this poster.
* D. Abbott et al., "Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies", Phys. Rev. Lett., 116, 214801 (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK012  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST055 The EIC Rapid Cycling Synchrotron Dynamic Aperture Optimization 210
 
  • H. Lovelace III, C. Montag, V.H. Ranjbar
    BNL, Upton, New York, USA
  • F. Lin
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  With the design of the Electron-Ion Collider (EIC), a new Rapid Cycling Synchrotron (RCS) must be designed to accelerate the electron bunches from 400 MeV up to 18 GeV. An optimized dynamic aperture with preservation of polarization through the energy ramp was found. The codes DEPOL, MAD-X, and BMAD are used in modeling the dynamics and spin preservation. The results will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST055  
About • Received ※ 27 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK046 Design Concept for a Second Interaction Region for the Electron-Ion Collider 564
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, T.J. Michalski, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, C. Weiss, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, K.A. Drees, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177, Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and UT-Battelle, LLC, under contract No. DE-AC05-00OR22725
In addition to the day-one primary Interaction Region (IR), the design of the Electron Ion Collider (EIC) must support operation of a 2nd IR potentially added later. The 2nd IR is envisioned in an existing experimental hall at RHIC IP8, compatible with the same beam energy combinations as the 1st IR over the full center of mass energy range of ~20 GeV to ~140 GeV. The 2nd IR is designed to be complementary to the 1st IR. In particular, a secondary focus is added in the forward ion direction of the 2nd IR hadron beamline to optimize its capability in detecting particles with magnetic rigidities close to those of the ion beam. We provide the current design status of the 2nd IR in terms of parameters, magnet layout and beam dynamics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK046  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK047 Cooling Performance in a Dual Energy Storage Ring Cooler 568
SUSPMF059   use link to see paper's listing under its alternate paper code  
 
  • B. Dhital, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • Y.S. Derbenev, D. Douglas, G.A. Krafft, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: EIC fellowship at Jefferson Lab
The longitudinal and transverse emittance growth in hadron beams due to intra-beam scattering (IBS) and other heating sources deteriorate the luminosity in a collider. Hence, a strong hadron beam cooling is required to reduce and preserve the emittance. The cooling of high energy hadron beam is challenging. We propose a dual energy storage ring-based electron cooler that uses an electron beam to extract heat away from hadron beam in the cooler ring while the electron beam is cooled by synchrotron radiation damping in the high energy damping ring. In this paper, we present a design of a dual energy storage ring-based electron cooler. Finally, the cooling performance is simulated using Jefferson Lab Simulation Package for Electron Cooling (JSPEC) for proton beams at the top energy of 275 GeV for Electron-Ion Collider.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK047  
About • Received ※ 06 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT044 Electron-Ion Collider Design Status 1954
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J.P. Jamilkowski, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, D. Xu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, D.M. Gassner, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST004 EIC’s Rapid Cycling Synchrotron Spin Tracking Update 2439
 
  • V.H. Ranjbar, H. Lovelace III, F. Méot
    BNL, Upton, New York, USA
  • F. Lin
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron Ion Collider (EIC) to be built will collide polarized electrons and ions up to 140 GeV center of mass with a time averaged polarization of 70% and luminosity up to 1034 cm-2 s-1. The EIC’s Rapid Cycling Synchrotron (RCS) will accelerate 2 polarized electrons bunches from 400 MeV to energies of 5, 10 and 18 GeV and inject them into the EIC’s Electron Storage Ring. The design of the RCS has progressed to accommodate a larger magnet free section for the detectors and to meet the space requirements of the RHIC tunnel. We present progress on full 6D spin tracking studies of the RCS with the updated lattice using the Zgoubi code to include magnet misalignments, field errors and corrections as well as radiative effects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST004  
About • Received ※ 07 June 2022 — Revised ※ 22 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)