Author: Ghasem, H.
Paper Title Page
MOPOTK037 Impact of Insertion Devices on Diamond-II Lattice 539
 
  • B. Singh, R.T. Fielder, H. Ghasem, J. Kallestrup, I.P.S. Martin, T. Olsson
    DLS, Oxfordshire, United Kingdom
 
  Funding: DLS ltd
The DIAMOND-II lattice is based on the ESRF-EBS cell, with the centre dipole replaced by a (chromatic) mid-straight, and a -I transformer, higher order achromat (HOA) & dispersion bumps to control the nonlinear dynamics. The majority of insertion devices currently on operation in Diamond will be either retained or upgraded as part of the Diamond-II program, and the new mid straights allow the total number of ID beamlines to be increased from 28 to 36.Therefore, it is important to investigate how IDs will affect the emittance, energy spread and linear and nonlinear beam dynamics. The kickmap approach has been used to model all IDs, including APPLE-II and APPLE-II Knot with active shim wires. In this paper, the outcome of these investigations will be presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK037  
About • Received ※ 04 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS032 Performance of the Diamond-II Storage Ring Collimators 1487
 
  • H. Ghasem, J. Kallestrup, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  Particle losses in a storage ring are unavoidable and it is very important to capture them and protect the machine from any possible damage. For this purpose, 6 collimators have been introduced in the Diamond-II storage ring lattice. This paper describes the main layout of the collimators with their corresponding impact and performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS032  
About • Received ※ 06 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS033 Diamond-II Storage Ring Developments and Performance Studies 1491
 
  • I.P.S. Martin, H.C. Chao, R.T. Fielder, H. Ghasem, J. Kallestrup, T. Olsson, B. Singh, S.W. Wang
    DLS, Oxfordshire, United Kingdom
 
  The Diamond-II project includes a replacement of the existing double-bend achromat storage ring with a modified hybrid 6-bend achromat, doubling the number of straight sections and increasing the photon beam brightness by up to two orders of magnitude*. The design and performance characterisation of the new storage ring has continued to progress, including a switch to an aperture-sharing injection scheme, freezing the magnet layout, studying the impact of IDs, developing a commissioning procedure and investigating collective effects. In this paper we present an overview of these studies, including final performance estimates.
*Diamond-II Technical Design Report, Diamond Light Source Ltd.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS033  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS034 Tunability and Alternative Optics for the Diamond-II Storage Ring 1495
 
  • H. Ghasem, I.P.S. Martin, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  When defining the magnet specifications, a key consideration is that the hardware should be flexible enough to allow some contingency for future tuning requirements or for alternative lattice solutions to be implemented. To define the required tunability of the magnets, we have investigated two lattice solutions for the Diamond-II storage ring upgrade, one with reduced beta functions at the straight sections for improved matching to the photon beam and one with an ultra-low emittance of 87 pm with IDs. In this paper, the linear and nonlinear beam dynamic issues as well as the photon beam brightness for these two options will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS034  
About • Received ※ 06 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT017 Orbit Stability Studies for the Diamond-II Storage Ring 2602
 
  • I.P.S. Martin, C.A. Abraham, D. Crivelli, H. Ghasem, B. Nicholson, T. Olsson, P. Sanchez Navarro
    DLS, Oxfordshire, United Kingdom
 
  The photon-beam positional stability relative to the beam size is a key performance parameter for storage ring light sources. The natural emittance of the Diamond-II ring will be lowered by a factor 16.7 compared to the existing ring, so the absolute stability requirement for the electron beam must reduce accordingly. In addition, advances in detector speed and resolution mean the tolerances are tighter compared to previous generations of storage rings, with a target of 3 % of beam size up to 1 kHz having been adopted for Diamond-II. In this paper we present studies of how the anticipated ground vibrations, girder motion and power supply ripple will affect the electron beam stability as a function of frequency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT017  
About • Received ※ 08 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT018 Aperture Sharing Injection for Diamond-II 2606
 
  • J. Kallestrup, H. Ghasem, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  The planned Diamond-II storage ring will provide users with an increase in brightness of up to two orders of magnitude compared with the existing Diamond facility. The aim is to maintain excellent photon beam stability in top-up mode, which requires frequent injections. This paper introduces the aperture sharing injection scheme designed for Diamond-II. The scheme promises, through the use of short striplines equipped with high-voltage nano-second pulsers, a quasi-transparent injection while maintaining an approximately 100% injection efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT018  
About • Received ※ 31 May 2022 — Accepted ※ 30 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)