Author: Geometrante, R.
Paper Title Page
THPOPT013 Emittance Reduction with the Variable Dipole for the ELETTRA 2.0 Ring 2586
 
  • A. Poyet, Y. Papaphilippou
    CERN, Meyrin, Switzerland
  • M.A. Domínguez, F. Toral
    CIEMAT, Madrid, Spain
  • R. Geometrante, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Geometrante
    KYMA, Trieste, Italy
 
  ELETTRA is a 2/2.4 GeV third-generation electron storage ring, located near Trieste, Italy. In view of a substantial increase of the machine performance in terms of brilliance, the so-called ELETTRA 2.0 upgrade is currently on-going. This upgrade is based on a 6-bends achromat, four dipoles of which having a longitudinally variable field. So far, those dipoles are foreseen to provide a field with a two step profile. The VAriable Dipole for the ELETTRA Ring (VADER) task, driven by the I.FAST European project, aims at developing a new dipole design based on a trapezoidal shape of the bending radius, which would allow for a further reduction of the horizontal emittance. A prototype of this magnet should be designed by the CIEMAT laboratory and built by KYMA company. This paper discusses the new dipole field specification and describes the corresponding optics optimization that was performed in order to reduce at best the emittance of the ELETTRA ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT013  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEINGD1 Industry and Accelerator Science, Technology, and Engineering - the Need to Integrate (Building Bridges) 1644
 
  • R. Geometrante
    KYMA, Trieste, Italy
  • S. Biedron
    Element Aero, Chicago, USA
  • E. Braidotti
    CAEN ELS srl, Trieste, Italy
  • J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • J.C. Rugsancharoenphol
    FTI, Bangkok, Thailand
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • M. Vretenar
    CERN, Meyrin, Switzerland
 
  Abstract  
slides icon Slides WEINGD1 [36.079 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEINGD1  
About • Received ※ 05 July 2022 — Accepted ※ 04 July 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)