Author: Ficcadenti, L.
Paper Title Page
MOPOMS021 The New C Band Gun for the Next Generation RF Photo-Injectors 679
 
  • D. Alesini, M. Ferrario, A. Giribono, A. Gizzi, L. Piersanti, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • F. Cardelli, G. Di Raddo, L. Faillace, S. Lauciani, A. Liedl, L. Pellegrino, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • G. Castorina
    AVO-ADAM, Meyrin, Switzerland
  • M. Croia
    ENEA Casaccia, Roma, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • G. Pedrocchi
    SBAI, Roma, Italy
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730 and INFN Commission V.
RF photo-injectors are widely used in modern facilities, especially in FEL, as very low-emittance and high-brightness electron sources. Presently, the RF technology mostly used for RF guns is the S band (3 GHz) with typical cathode peak fields of 80-120 MV/m and repetition rates lower than 120 Hz. There are solid reasons to believe that the frequency step-up from S band to C band (6 GHz) can provide a strong improvement of the beam quality due to the potential higher achievable cathode field (>160 MV/m) and higher repetition rate (that can reach the kHz level). In the contest of the European I.FAST project, a new C band gun has been designed and will be realized and tested. It is a 2.5 cell standing wave cavity with a four port mode launcher, designed to operate with short RF pulses (<300 ns) and cathode peak field larger than 160 MV/m. In the paper we present the electromagnetic and thermo-mechanical design and the results of the prototyping activity and rf measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS021  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS017 Space Charge Analysis for Low Energy Photoinjector 2272
SUSPMF075   use link to see paper's listing under its alternate paper code  
 
  • M. Carillo, F. Bosco, E. Chiadroni, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • M. Behtouei, B. Spataro
    LNF-INFN, Frascati, Italy
  • O. Camacho, A. Fukasawa, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • L. Faillace
    INFN/LNF, Frascati, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
 
  Funding: This work is supported by DARPA under Contract HR001120C0072, by DOE Contract DE-SC0009914 & DE-SC0020409, by the National Science Foundation Grant N.PHY-1549132 and by INFN through the project ARYA.
Beam dynamics studies are performed in the context of a C-Band hybrid photo-injector project developed by a collab- oration between UCLA/Sapienza/INFN-LNF/RadiaBeam. These studies aim to explain beam behaviour through the beam-slice evolution, using analytical and numerical approaches. An understanding of the emittance oscillations is obtained starting from the slice analysis, which allows correlation of the position of the emittance minima with the slope of the slices in the transverse phase space (TPS). At the end, a significant reduction in the normalized emittance is obtained by varying the transverse shape of the beam while assuming a longitudinal Gaussian distribution. Indeed, the emittance growth due to nonlinear space-charge fields has been found to occur immediately after moment of the beam emission from the cathode, giving insight into the optimum laser profile needed for minimizing the emittance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS017  
About • Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK054 Proposal of a VHEE Linac for FLASH Radiotherapy 2903
SUSPMF120   use link to see paper's listing under its alternate paper code  
 
  • L. Giuliano, F. Bosco, M. Carillo, D. De Arcangelis, A. De Gregorio, L. Ficcadenti, D. Francescone, G. Franciosini, M. Migliorati, A. Mostacci, L. Palumbo, V. Patera, A. Sarti
    Sapienza University of Rome, Rome, Italy
  • D. Alesini, A. Gallo, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • M. Behtouei, L. Faillace, B. Spataro
    LNF-INFN, Frascati, Italy
  • M.G. Bisogni, F. Di Martino, J.H. Pensavalle
    INFN-Pisa, Pisa, Italy
  • G.A.P. Cirrone, G. Cuttone, G. Torrisi
    INFN/LNS, Catania, Italy
  • V. Favaudon, A. Patriarca
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
  • S. Heinrich
    Institut Curie, Centre de Recherche, Orsay, France
 
  Translation of electron FLASH radiotherapy in clinical practice requires the use of high energy accelerators to treat deep tumours and Very High Electron Energy (VHEE) could represent a valid technique to achieve this goal. In this sce- nario, a VHEE FLASH linac is under study at the University La Sapienza of Rome (Italy) in collaboration with the Italian Institute for Nuclear Research (INFN) and the Curie Insti- tute (France). Here we present the preliminary results of a compact C-band system aiming to reach an high accelerating gradient and an high pulse current necessary to deliver high dose per pulse and ultra-high dose rate required for FLASH effect. We propose a system composed of a low energy high current injector linac followed by a modular section of high accelerating gradient structures. CST code is used to define the required LINAC’s RF parameters and beam dynamics simulations are performed using T-Step, ASTRA and GPT tracking codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK054  
About • Received ※ 17 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)