Author: Ferrario, M.
Paper Title Page
MOPOMS019 The New SPARC_LAB RF Photo-Injector 671
 
  • D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F. Cardelli, G. Costa, M. Del Franco, G. Di Pirro, L. Faillace, M. Ferrario, G. Franzini, A. Gallo, A. Giribono, L. Piersanti, L. Sabbatini, A. Stella, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • A. Battisti, E. Chiadroni, G. Di Raddo, A. Liedl, V.L. Lollo, L. Pellegrino, R. Pompili, S. Romeo, V. Shpakov, C. Vaccarezza, F. Villa
    LNF-INFN, Frascati, Italy
  • M. Carillo, E. Chiadroni
    Sapienza University of Rome, Rome, Italy
  • A. Cianchi, M. Galletti
    Università di Roma II Tor Vergata, Roma, Italy
 
  A new RF photo-injector has been designed, realized and successfully installed at the SPARC_LAB facility (INFN-LNF, Frascati, Rome). It is based on a 1.6 cell RF gun fabricated with the new brazing free technology recently developed at the National Laboratories of Frascati. The electromagnetic design has been optimized to have a full compensation of the dipole and quadrupole field components introduced by the coupling hole with an improvement of the effective pumping speed with two added pumping ports. The gun is overcoupled (\beta=2) to reduce the filling time and to allow the operation with short RF pulses. The overall injector integrates a new solenoid with a remote control of the transverse position and a variable skew quadrupole for the compensation of residual quadrupole field components. It also allows an on axis laser injection system with the last mirror in air, and the possibility of a future integration of an X/C band cavity linearizer. In the paper we report the main characteristics of the electromagnetic and mechanical design and the low and high power test results that shows the extremely good perfomances of the new device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS019  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS021 The New C Band Gun for the Next Generation RF Photo-Injectors 679
 
  • D. Alesini, M. Ferrario, A. Giribono, A. Gizzi, L. Piersanti, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • F. Cardelli, G. Di Raddo, L. Faillace, S. Lauciani, A. Liedl, L. Pellegrino, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • G. Castorina
    AVO-ADAM, Meyrin, Switzerland
  • M. Croia
    ENEA Casaccia, Roma, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • G. Pedrocchi
    SBAI, Roma, Italy
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730 and INFN Commission V.
RF photo-injectors are widely used in modern facilities, especially in FEL, as very low-emittance and high-brightness electron sources. Presently, the RF technology mostly used for RF guns is the S band (3 GHz) with typical cathode peak fields of 80-120 MV/m and repetition rates lower than 120 Hz. There are solid reasons to believe that the frequency step-up from S band to C band (6 GHz) can provide a strong improvement of the beam quality due to the potential higher achievable cathode field (>160 MV/m) and higher repetition rate (that can reach the kHz level). In the contest of the European I.FAST project, a new C band gun has been designed and will be realized and tested. It is a 2.5 cell standing wave cavity with a four port mode launcher, designed to operate with short RF pulses (<300 ns) and cathode peak field larger than 160 MV/m. In the paper we present the electromagnetic and thermo-mechanical design and the results of the prototyping activity and rf measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS021  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST035 Spectroscopic Measurements as Diagnostic Tool for Plasma-Filled Capillaries 1776
SUSPMF102   use link to see paper's listing under its alternate paper code  
 
  • S. Arjmand, L. Crincoli, D. Pellegrini
    INFN/LNF, Frascati, Italy
  • M.P. Anania, A. Biagioni, G. Costa, M. Ferrario, M. Galletti, V.L. Lollo, R. Pompili
    LNF-INFN, Frascati, Italy
  • M. Del Franco
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • D. Giulietti
    UNIPI, Pisa, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The research concerns the study of the plasma sources for plasma-based accelerators (PBAs) at the SPARC_LAB test-facility (LNF-INFN). The interest in compact accelerators, overcoming the gigantism of the conventional radio-frequency (RF) accelerators, is growing in High Energy Physics. The plasma-based accelerating gradients can attain the GV/m scale. At the SPARC_LAB test-facility, a plasma device is under development. It consists of a capillary in which one or more inlets inject neutral gas (Hydrogen), ionized by a high-voltage (HV) discharge. Electron density has been measured as a function of time through the Stark broadening profiles of the Balmer line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST035  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)