Author: Feng, C.
Paper Title Page
TUPOPT011 Start To End Simulation Study For Oscillator-Amplifier Free-Electron Laser 1022
 
  • H. Sun, Z.H. Zhu
    SINAP, Shanghai, People’s Republic of China
  • C. Feng, B. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • Z.H. Zhu
    DESY, Hamburg, Germany
 
  External seeding techniques like high-gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) have been proposed and proven to be able to generate fully coherent radiation in the EUV and X-ray range. A big challenge is to combine the advantages of seeding schemes with high repetition rates. Recently, for seeding at a high repetition rate, an optical resonator scheme has been introduced to recirculate the radiation in the modulator to seed the high repetition rate electron bunches. Earlier studies have shown that a resonator-like modulator combined with an amplifier in high gain harmonic generation (HGHG) configuration can be used to generate radiation whose wavelength can reach the water window region. This scheme overcomes the limitation of requiring high repetition rate seed laser systems. In this contribution, we present start-to-end simulation results of a seeded oscillator-amplifier FEL scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT011  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT013 Twin Delayed Deep Deterministic Policy Gradient for Free-electron Laser Online Optimization 1025
 
  • M. Cai, C. Feng, L. Tu, Z.T. Zhao, Z.H. Zhu
    SINAP, Shanghai, People’s Republic of China
  • C. Feng, K.Q. Zhang, Z.T. Zhao
    SSRF, Shanghai, People’s Republic of China
  • D. Gu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  X-ray free-electron lasers (FEL) have contributed to many frontier applications of nanoscale science which benefit from its extraordinary properties. During FEL commissioning, the beam status optimization especially orbit correction is particularly significant for FEL amplification. For example, the deviation between beam orbit and the magnetic center of undulator can affect the interaction between the electron beam and the FEL pulse. Usually, FEL commissioning requires a lot of effort for multi-dimensional parameters optimization in a time-varying system. Therefore, advanced algorithms are needed to facilitate the commissioning procedure. In this paper, we propose an online method to optimize the FEL power and transverse coherence by using a twin delayed deep deterministic policy gradient (TD3) algorithm. The algorithm exhibits more stable learning convergence and improves learning performance because the overestimation bias of policy gradient methods is suppressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT013  
About • Received ※ 17 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)