Author: Dürr, V.
Paper Title Page
THPOST025 Operational Experience with the Improved VSR DEMO Collimating Shielded Bellow in BESSY II 2497
 
  • H.-W. Glock, V. Dürr, F. Glöckner, J. Knobloch, M. Ries, A. Vélez
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • A. Vélez
    Technical University Dortmund, Dortmund, Germany
 
  Funding: Work supported by grants of the Helmholtz Association
The Collimating Shielded Bellow (CsB) is designed to serve both as a flexible beam pipe connection between two adjacent superconducting cavities as foreseen in VSR DEMO and as a synchrotron light collimator to shield the down-stream cavity from synchrotron radiation. A convoluted inner RF shield was applied to prevent fundamental mode heating of the stainless-steel-made bellow in the cryogenic environment, making the such captured inner volume very difficult to access for inspection and cleaning. A first version of the device was successfully tested as part of the beam pipe of the synchrotron light source BESSY II under regular operation for more than a year. It suffered from an unfavorable long outgassing commissioning. Therefore a detachable design, allowing for rigorous inner surface preparation and cleaning, was built and recently installed in BESSY II. CsB version 2 design and experimental outcomes are described in the paper. First results indicated a significantly improved vacuum commissioning performance, which was confirmed later on.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST025  
About • Received ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK001 Variable Permanent Hybrid Magnets for the Bessy III Storage Ring 2763
 
  • J. Völker, V. Dürr, P. Goslawski, A. Jankowiak, M. Titze
    HZB, Berlin, Germany
 
  The Helmholtz Zentrum Berlin (HZB) is working on the conceptual design of a successor source to BESSY II, an new BESSY III facility, designed for a beam energy of 2.5GeV and based on a multi-bend achromat (MBA) lattice for a low emittances of 100pm-rad. Bending and focusing magnets in the MBA cells should consist of permanent magnets (PM), to allow for a competitive and compact lattice, to increase the magnetic stability and to decrease the electric power consumption of the machine. However, using pure permanent magnet systems would result in a completely fixed lattice. Therefore, we are developing Variable Permanent Hybrid Magnets (VPHM), combining PM materials like NdFeB with a surrounding soft iron yoke and additional electric coils. This design can achieve the same field strength and field quality as conservative magnets, with only a small fraction of the electric power consumption, and a ca. 10% variability in the field amplitudes. In this paper, design and first optimization results of the magnets will be presented, which are a promising option for the new BESSY III facility, and an estimated reduction in total power consumption for the magnet lattice of up to 80%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK001  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)