Author: Diefenbach, J.
Paper Title Page
MOPOPT028 Beam Diagnostics and Instrumentation for MESA 307
 
  • M. Dehn, K. Aulenbacher, J. Diefenbach, F. Fichtner, P. Heil, R.G. Heine, R.F.K. Kempf, C. Matejcek
    IKP, Mainz, Germany
  • C.L. Lorey
    KPH, Mainz, Germany
 
  Funding: Work supported by PRISMA and the German federal state of Rheinland-Pfalz
For the new Mainz Energy recovering Superconducting Accelerator (MESA) a wide range of beam currents is going to be used during machine optimization and for the physics experiments. To be able to monitor beam parameters like beam current, phases and beam positions several different kinds of beam instrumentation is foreseen. Some components have already been tested at the Mainz Microtron (MAMI) and others have been used at the MELBA test accelerator. In this paper we will present the current status of the instrumentation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT028  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT054 Target Studies for the FCC-ee Positron Source 1979
 
  • F. Alharthi, I. Chaikovska, R. Chehab, S. Ogur, A. Ushakov, S. Wallon
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • L. Bandiera, A. Mazzolari, M. Romagnoni, A.I. Sytov
    INFN-Ferrara, Ferrara, Italy
  • J. Diefenbach, W. Lauth
    IKP, Mainz, Germany
  • O. Khomyshyn
    Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • D.M. Klekots
    National Taras Shevchenko University of Kyiv, The Faculty of Physics, Kyiv, Ukraine
  • V.V. Mytrochenko
    NSC/KIPT, Kharkov, Ukraine
  • P. Sievers, Y. Zhao
    CERN, Meyrin, Switzerland
  • M. Soldani
    Università degli Studi di Ferrara, Ferrara, Italy
 
  FCC-ee injector study foresees 3.5~nC electron and positron bunches with 200 Hz repetition and 2 bunches per linac pulse at 6~GeV extraction energy. Regarding the possible options of positron production, we retain both of the conventional amorphous target and the hybrid target options. The hybrid scheme uses an intense photon production by 6 GeV electrons impinging on a crystal oriented along a lattice axis. In such a way, it involves two targets: a crystal as a photon radiator and an amorphous target-converter. Therefore, to avoid early failure or damage of the target, the candidate materials for the crystal and conversion targets have started to be tested by using the intense electron beam at Mainzer Mikrotron in Germany by the end of 2021. By manipulating the beam intensity, focusing, and chopping, a Peak Energy Deposition Density in the tested targets could be achieved close to that generated by the electron/photon beam in the FCC-ee positron target. Radiation-damage studies of the crystal sample have been also performed allowing estimating the effect on the photon enhancement used in the hybrid positron source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT054  
About • Received ※ 16 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)