Author: Cha, H.J.
Paper Title Page
WEPOST034 Magnetic Characterization of a Superconducting Transverse Gradient Undulator for Compact Laser Wakefield Accelerator-Driven FELs 1772
SUSPMF035   use link to see paper's listing under its alternate paper code  
 
  • K. Damminsek, A. Bernhard, H.J. Cha, A.W. Grau, A.-S. Müller, M.S. Ning, Y. Tong
    KIT, Karlsruhe, Germany
  • S.C. Richter
    CERN, Meyrin, Switzerland
  • R. Rossmanith
    DESY, Hamburg, Germany
 
  Funding: Federal Ministry of Education and Research of Germany and the Development and Promotion of Science and Technology Talents Project (DPST)
A transverse gradient undulator (TGU) is a key component compensating for the relatively large energy spread of Laser Wakefield Accelerator (LWFA)-generated electron beams for realizing a compact Free Electron Laser (FEL). A superconducting TGU with 40 periods has been fabricated at the Karlsruhe Institute of Technology (KIT). In this contribution, we report that the superconducting TGU has been commissioned with nominal operational parameters at an off-line test bench. An experimental set-up for mapping the magnetic field on a two-dimensional grid in the TGU gap has been employed for the magnetic characterization. We show the first preliminary results of these measurements showing the longitudinal quality, the transverse gradient and the transient behaviour of the superconducting TGU field.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST034  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST027 Fabrication of Robust Thermal Transition Modules and First Cryogenic Experiment with the Refurbished COLDDIAG 2505
 
  • H.J. Cha, N. Glamann, A.W. Grau, A.-S. Müller, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
Two sets of thermal transition modules as a key component for the COLDDIAG (cold vacuum chamber for beam heat load diagnostics) refurbishment were manufactured, based on the previous design study. The modules are installed in the existing COLDDIAG cryostat and tested with an operating temperature of approximately 50 K at both a cold bore and a thermal shield. This cool-down experiment is a preliminary investigation aiming at beam heat-load studies at the FCC-hh where the beam screens will be operated at almost the same temperature. In this contribution, we report the fabrication processes of the mechanically robust transition modules and the first thermal measurement results with the refurbished COLDDIAG in a cryogenic environment. The static heat load in the refurbished cryostat remains unchanged, compared to that in the former one (4-K cold bore and 50-K shield with thin transitions), despite the increase in the transition thickness. It originates from the identical temperature at the cold bore and the shield, which can theoretically allow the heat intakes by thermal conduction and radiation between them to vanish.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST027  
About • Received ※ 16 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)