Author: Cavenago, M.
Paper Title Page
WEPOTK017 An Efficient H-/ D- Extraction in Neutral Beam Injection (NBI) Ion Sources 2078
 
  • V. Variale
    INFN-Bari, Bari, Italy
  • M. Cavenago
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: INFN, DTT
The negative ion source development has reached performances very close to those required by the ITER project; see for example the test facility ELISE results*. A main residual problem seems to be the great amount of co-extracted electrons in the top part of the source. The introduction of a magnetic filter to remove the electrons from the extraction zone of the source causes ExB particle drifts (or shifts) which move both ions and electrons towards the top (or bottom depending on the B direction); in the top part the electron concentration and extracted current increase and that limits the extracted ion amount. In this contribution, as a possible solution, the application of a Planar Ion Funnel (PIF) extraction electric field configuration** on the source exit is proposed. The electric field line shape of PIF configuration, not only should break the perpendicularity between the magnetic filter B and the extraction electric field E in such a way to prevents the ExB particle drifts, but also should give a more efficient field shape for the H-/D- extraction. Preliminary simulations of D- and e- trajectories are presented to confirm the efficiency of the PIF system.
* B. Heinemann et al., Fusion Engineering and design (2021).
** A. Chaudhary et al., Rev. Sci. 85, 105101 (2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK017  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK003 Optimization of Mass Resolution Parameters Combined with Ion Cooler Performance 2770
 
  • M. Cavenago, C. Baltador, L. Bellan, M. Comunian, E. Fagotti, A. Galatà, M. Maggiore, A. Pisent, C.R. Roncolato, M. Rossignoli, A. Ruzzon
    INFN/LNL, Legnaro (PD), Italy
  • G. Maero, M. Romé
    Universita’ degli Studi di Milano e INFN, Milano, Italy
  • V. Variale
    INFN-Bari, Bari, Italy
 
  High mass resolution spectrometers (HRMS) for separation of exotic ion species in nuclear physics experiment request a low emittance and small energy spread (with D E the peak-to-peak value, and sE the rms value) of the input beam, so that ion cooler devices, as a Radio Frequency Quadrupole Coolers (RFQC), are typically envisioned. The SPES (Selective Production of Exotic Species) project at LNL requests M/(D M) about 20000, rms normalized emittance in the order of 2 nm, and for 160 keV ions, spread sE about 1 eV. Typical limits of RFQC[*] and HRMS[**] performances are discussed, and relevant formulas are implemented in easy reference tools. The necessary collisional data are reviewed, in particular for Cs+ against He gas, whose pressure ranges from 2 to 9 Pa; status of Milan test bench is briefly updated. Practical consideration on gas pumping, voltage stability and magnet design are also included.
[*] Cavenago et al. Optimization of ion transport in a combined RFQ Cooler …, in ICIS 2021 (in press)
[**] M. Comunian et al. p. 3252 in proceedings IPAC2018 doi:10.18429/JACoW-IPAC2018-THPAK021
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK003  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)