Author: Cai, R.
Paper Title Page
WEPOST018 Power Deposition Studies for Crystal-Based Heavy Ion Collimation in the LHC 1726
SUSPMF007   use link to see paper's listing under its alternate paper code  
 
  • J.B. Potoine, R. Bruce, R. Cai, L.S. Esposito, P.D. Hermes, A. Lechner, S. Redaelli, A. Waets
    CERN, Meyrin, Switzerland
  • F. Wrobel
    IES, Montpellier, France
 
  The LHC heavy-ion program with 208Pb82+ beams is foreseen to benefit from a significant intensity upgrade in 2022. A performance limitation may arise from ion fragments scattered out of the collimators in the betatron cleaning insertion, which risk quenching superconducting magnets during periods of short beam lifetime. In order to mitigate this risk, an alternative collimation technique, relying on bent crystals as primary collimators, will be used in future heavy-ion runs. In this paper, we study the power deposition in superconducting magnets by means of FLUKA shower simulations, comparing the standard collimation system against the crystal-based one. The studies focus on the dispersion suppressor regions downstream of the betatron cleaning insertion, where the ion fragment losses are the highest. Based on these studies, we quantify the expected quench margin expected in future runs with 208Pb82+ beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST018  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST019 Benchmarks of Energy Deposition Studies for Heavy-Ion Collimation Losses at the LHC 1730
 
  • J.B. Potoine, R. Bruce, R. Cai, P.D. Hermes, A. Lechner, S. Redaelli, A. Waets
    CERN, Meyrin, Switzerland
  • F. Wrobel
    IES, Montpellier, France
 
  During some periods in its second physics run (2015-2018), the LHC has been operated with 208Pb82+ ion beams at an energy of 6.37 ZTeV. The LHC is equipped with a betatron collimation system, which intercepts the transverse beam halo and protects sensitive equipment such as superconducting magnets against beam losses. However, hadronic fragmentation and electromagnetic dissociation of heavy ions in collimators generate off-rigidity particles, which can be lost in the downstream dispersion suppressor, putting the magnets at risk to quench. An accurate modelling of the beam-induced energy deposition in the collimation system and superconducting magnets is important for quantifying possible performance limitations arising from magnet quenches. In this paper, we compare FLUKA shower simulations against beam loss monitor measurements recorded during the 2018 208Pb82+ run. In particular, we investigate fast beam loss events, which lead to recurring beam aborts in 2018 operation. Based on these studies, we assess the ability of the simulation model to reproduce the observed loss patterns in the collimation region and dispersion suppressor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST019  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK018 Simulation of Heavy-Ion Beam Losses with Crystal Collimation* 2082
SUSPMF048   use link to see paper's listing under its alternate paper code  
 
  • R. Cai, R. Bruce, R. Bruce, M. D’Andrea, L.S. Esposito, P.D. Hermes, A. Lechner, A. Lechner, D. Mirarchi, J.B. Potoine, S. Redaelli, F. Salvat Pujol, J. Schoofs
    CERN, Meyrin, Switzerland
  • J.B. Potoine
    IES, Montpellier, France
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  With the higher stored energy envisioned for future heavy-ion runs in the LHC and the challenging fragmentation aspect of heavy-ion beams due to interaction with collimator material, the need arises for even more performing collimation systems. One promising solution is crystal channeling, which is used in the HL-LHC baseline and starts with Run III for heavy-ion collimation. To investigate an optimal configuration for the collimation system, a well-tested simulation setup is required. This work shows the simulations of channeling and other coherent effects in the SixTrack-FLUKA Coupling simulation framework and compares simulated loss patterns with data from previous beam tests.
*Research supported by the HL’LHC project
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK018  
About • Received ※ 07 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)