Author: Boonpornprasert, P.
Paper Title Page
MOPOPT029 Longitudinal Phase Space Benchmarking for PITZ Bunch Compressor 310
 
  • A. Lueangaramwong, Z. Aboulbanine, G.D. Adhikari, N. Aftab, P. Boonpornprasert, G.Z. Georgiev, J. Good, M. Groß, C. Koschitzki, M. Krasilnikov, X.-K. Li, O. Lishilin, D. Melkumyan, H.J. Qian, G. Shu, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • N. Chaisueb
    Chiang Mai University, Chiang Mai, Thailand
 
  The longitudinal phase space characteristics of space-charge dominated electron beams are keys to achieving bunch compression for the accelerator-based THz source at the Photo Injector Test facility at DESY in Zeuthen (PITZ). Such a THz source is proposed as a prototype for an accelerator-based THz source for pump-probe experiments at the European XFEL. A start-to-end simulation has suggested the settings of the phase of booster linear accelerator manipulating longitudinal beam characteristics to optimize the performance of the THz FEL. Although beam diagnostics after compression at PITZ are limited, the longitudinal beam characteristics as a function of the booster phase have been measured and compared with the corresponding simulations. The benchmark involves measurements of longitudinal phase space distribution for bunch charges up to 2 nC. The measurement technique assigned uses 50-um slits to achieve higher momentum and time resolution (1.8 keV/c and 0.5 ps, respectively).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT029  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT016 Status of the THz@PITZ Project - The Proof-of-Principle Experiment on a THz SASE FEL at the PITZ Facility 1033
 
  • T. Weilbach, P. Boonpornprasert, G.Z. Georgiev, G. Koss, M. Krasilnikov, X.-K. Li, A. Lueangaramwong, F. Mueller, A. Oppelt, S. Philipp, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: This work was supported by the European XFEL research and development program.
In order to allow THz pump/X-ray probe experiments at full bunch repetition rate for users at the European XFEL, the Photo Injector Test Facility at DESYin Zeuthen (PITZ) is building a prototype of an accelerator-based THz source. The goal is to generate THz SASE FEL radiation with a mJ energy level per bunch using an undulator driven by the electron beam from PITZ. Therefore, the existing PITZ beam line is extended into a tunnel annex downstream of the existing accelerator tunnel. The final design of the beam line extension consists of a bunch compressor, a collimation system and a beam dump in the PITZ tunnel. In the tunnel annex one LCLS-I undulator is installed for the production of the THz radiation with a quadrupole triplet in front of it for matching the beam parameters for the FEL process. Behind the undulator two screen stations couple out the THz radiation, for measurements of bunch compression, pulse energy or spatial distribution. A dipole separates the electron from the THz beam and a quadrupole doublet transports the electron beam to the beam dump. The installation progress will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT016  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT017 Start-to-end Simulations for Bunch Compressor and THz SASE FEL at PITZ 1037
 
  • A. Lueangaramwong, P. Boonpornprasert, M. Krasilnikov, X.-K. Li, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  The magnetic bunch compressor was designed as part of a THz accelerator source being developed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) as a prototype for pump-probe experiments at the European XFEL. As an electron bunch is compressed to achieve higher bunch currents for the THz source, the beam dynamics in the bunch compressor was studied by numerical simulations. A start-to-end simulation optimizer including coherent synchrotron radiation (CSR) effects has been developed by combining the use of ASTRA, OCELOT, and GENESIS to support the design of the THz source prototype. In this paper we present simulation results to explore the possibility of improving the performance of the THz FEL at PITZ by using the developed bunch compressor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT017  
About • Received ※ 18 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT027 Numerical Simulation of a Superradiant THz Source at the PITZ Facility 1063
 
  • N. Chaisueb, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • P. Boonpornprasert, M. Krasilnikov, X.-K. Li, A. Lueangaramwong
    DESY Zeuthen, Zeuthen, Germany
  • S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  An accelerator-based THz source is under development at the Photo Injector Test Facility at DESY in Zeuthen (PITZ). The facility can produce high brightness electron beams with high charge and small emittance. Currently, a study on development of a tunable high-power THz SASE FEL for supporting THz-pump, X-ray-probe experiments at the European XFEL is underway. An LCLS-I undulator, a magnetic chicane bunch compressor, and THz pulse diagnostics have been installed downstream the previously existing setup of the PITZ beamline. Additional to the SASE FEL, a possibility to generate superradiant THz undulator radiation from short electron bunches is under investigation, which is the focus in this study. Numerical simulations of the superradiant THz radiation by using sub-picosecond electron bunches with energy of 6 - 22 MeV and bunch charge up to 2 nC produced from the PITZ accelerator are performed. The results show that the radiation with a spectral range of 0.5 to 9 THz and a pulse energy in the order of sub-uJ can be obtained. The results from this study can be used as a benchmark for the future development.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT027  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOYGD2
Experimental Slice Emittance Reduction at PITZ Using Laser Pulse Shaping  
 
  • R. Niemczyk, Z. Aboulbanine, G.D. Adhikari, N. Aftab, P. Boonpornprasert, G.Z. Georgiev, J. Good, M. Groß, C. Koschitzki, X.-K. Li, O. Lishilin, D. Melkumyan, S.K. Mohanty, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • M.E. Castro Carballo, M. Krasilnikov, G. Vashchenko
    DESY, Hamburg, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Free-electron lasers in the X-ray regime require a high-brightness electron beam, i.e. an electron beam with high current and low transverse emittance. At the Photo Injector Test facility at DESY in Zeuthen (PITZ) high-brightness electron sources are optimized for the use at FLASH and European XFEL. A low transverse emittance of the electron beam’s central part, which is assumed to be the lasing slices, is of particular interest for the efficient FEL operation. Over the past years a slice emittance measurement scheme has been developed at PITZ which employs an rf deflector and additional quadrupole magnets along the beamline to the standard measurement procedure for the projected emittance (single-slit scan). It allows measuring the slice emittance in a high-brightness photo injector. Transversely flat-top shaped laser pulses of different temporal distributions (Gaussian and flat-top) have been used to emit electrons, as well as transversely-truncated Gaussian laser pulses with temporal Gaussian shape. The paper shows that the lowest slice emittance in the injector is reached with a temporal flattop shape, or when using a transversely-truncated Gaussian shape.  
slides icon Slides THOYGD2 [2.045 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST009 Simulation Study of a Bunch Compressor for an Accelerator-Based THz Source at the European XFEL 2454
 
  • P. Boonpornprasert, G.Z. Georgiev, M. Krasilnikov, X.-K. Li, A. Lueangaramwong
    DESY Zeuthen, Zeuthen, Germany
 
  The European XFEL has planned to perform pump-probe experiments using its X-ray pulses and THz pulses. A promising concept to provide the THz pulses with a pulse repetition rate identical to that of the X-ray pulses is to generate them using an accelerator-based THz source. The THz source requires a bunch compressor in order to manipulate the longitudinal phase space of the electron bunch to match with various options of THz radiation generation. This paper presents and discusses simulation study of the bunch compressor for the THz source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST009  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)