Author: Boland, M.J.
Paper Title Page
MOPOPT003 Studying Instabilities in the Canadian Light Source Storage Ring Using the Transverse Feedback System 230
SUSPMF081   use link to see paper's listing under its alternate paper code  
 
  • S.J. Martens
    University of Saskatchewan, Saskatoon, Canada
  • D. Bertwistle, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • P. Hartmann
    DELTA, Dortmund, Germany
 
  The Transverse Feedback system at the Canadian Light Source can identify, categorize, and mitigate against periodic instabilities that arise in the storage ring beam. By quickly opening and closing the feedback loop, previously mitigated instabilities will be allowed to grow briefly before being damped by the system. The resulting growth in the beam oscillation amplitude curve can be analyzed to determine growth/damp rates and modes of the coupled bunch oscillations. Further measurements can be collected via active excitement of modes rather than passive growth. These Grow/damp and Excite/Damp curves have been collected and analyzed for various storage ring beam properties, including beam energy, machine chromaticity, and in-vacuum insertion device gap widths.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT003  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS003 CLS Operational Status and Future Operational Plans 1389
 
  • M.J. Boland, F. Le Pimpec
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source (CLS) has been in operation for users since 2005 and recently commissioned the 22nd photon beamline. In 2021 the CLS commenced top-up operations at 220 mA, which has been a big success for the user experiments. The storage ring is now RF power limited and will require a second RF cavity to realise the design goal of 500 mA. The 250 MeV electron injector complex for the CLS booster synchrotron ring dates back to the original linac from 1962 and the Saskatchewan Accelerator Laboratory. This paper will give an overview of the present status of the accelerator systems for user operations and the operational improvement plans for a second RF cavity in the storage ring and a new linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS003  
About • Received ※ 16 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST011 Studies on Top-Up Injection into the FCC-ee Collider Ring 1699
SUSPMF006   use link to see paper's listing under its alternate paper code  
 
  • P.J. Hunchak, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • W. Bartmann, Y. Dutheil, M. Hofer, R.L. Ramjiawan, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M.J. Boland
    University of Saskatchewan, Saskatoon, Canada
 
  In order to maximize the luminosity production time in the FCC-ee, top-up injection will be employed. The positron and electron beams will be accelerated to the collision energy in the booster ring before being injected with either a small transverse or longitudinal separation to the stored beam. Using this scheme essentially keeps the beam current constant and, apart from a brief period during the injection process, collision data can be continuously acquired. Two top-up injection schemes, each with on- and off-momentum sub-schemes, viable for FCC-ee have been identified in the past and are studied in further detail to find a suitable design for each of the four operation modes of the FCC-ee. In this paper, injection straight optics, initial injection tracking studies and the effect on the stored beam are presented. Additionally, a basic proxy error lattice is introduced as a first step to studying injection into an imperfect machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST011  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT020 Status and Plans for the New CLS Electron Source Lab 2614
 
  • M.J. Boland, D. Bertwistle, F. Le Pimpec
    CLS, Saskatoon, Saskatchewan, Canada
  • X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
 
  The Canadian Light Source (CLS) has recently created a new Electron Source Lab (ESL) that can run independently from user operations. A section of the old Saskatchewan Accelerator Laboratory experimental nuclear physics tunnels has been rebuilt with new shielding and a separate entrance. The laboratory will be used to prepare an operational spare electron gun for the 250 MeV linac. In addition, there are plans to develop RF guns for a future branch line to inject into the linac and for possible short pulse production. This paper will give an overview of the ESL space and the first electron guns which plan to be installed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT020  
About • Received ※ 16 June 2022 — Revised ※ 29 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)