Author: Bojtar, L.    [Bojtár, L.]
Paper Title Page
MOPOST048 Efficient Representation of Realistic 3D Static Magnetic Fields for Symplectic Tracking and First Applications for Frequency Analysis and Dynamic Aperture Studies in ELENA 187
 
  • L. Bojtár
    CERN, Meyrin, Switzerland
 
  The algorithm called SIMPA has a new and unique approach to long-term 4D tracking of charged particles in arbitrary static electromagnetic fields. Field values given on the boundary of the region of interest are reproduced by an arrangement of hypothetical magnetic or electric point sources surrounding the boundary surface. The vector and scalar potentials are obtained by summing the contributions of each source. The second step of the method improves the evaluation speed of the potentials and their derivatives by orders of magnitude. This comprises covering the region of interest by overlapping spheres, then calculating the spherical harmonic expansion of the potentials on each sphere. During tracking, field values are evaluated by calculating the solid harmonics and their derivatives inside a sphere containing the particle. Frequency analysis and dynamic aperture studies in ELENA is presented. The effect of the end fields and the perturbation introduced by the magnetic system of the electron cooler on dynamic aperture is shown. The dynamic aperture calculated is the direct consequence of the geometry of the magnetic elements, no multipole errors have been added to the model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST048  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOXGD1 ELENA - From Commissioning to Operation 2391
 
  • L. Ponce, L. Bojtár, C. Carli, B. Dupuy, Y. Dutheil, P. Freyermuth, D. Gamba, L.V. Jørgensen, B. Lefort, S. Pasinelli
    CERN, Meyrin, Switzerland
 
  In 2021 the Extra Low ENergy Antiproton ring (ELENA) moved from commissioning into the physics production phase providing 100 keV antiprotons to the newly connected experiments paving the way to an improved trapping efficiency by one to two orders of magnitude compared to the AD era. After recalling the major work undertaken during the CERN Long Shutdown 2 (2019-2020) in the antiproton deceleration complex, details will be given on the ELENA ring and the new electrostatic transfer line beam commissioning using an ion source. Sub-sequentially, the progress from commissioning with ions to operation with antiprotons will be described with emphasis on the achieved beam performance. Finally, the impact on the performance of the main hardware systems will be reviewed.  
slides icon Slides THOXGD1 [9.720 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOXGD1  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)