Author: Bidault, N.
Paper Title Page
MOPOST035 Operational Experience and Performance of the REX/HIE-ISOLDE Linac 140
 
  • J.A. Rodriguez, N. Bidault, E. Fadakis, P. Fernier, M.L. Lozano, S. Mataguez, E. Piselli, E. Siesling
    CERN, Meyrin, Switzerland
 
  Located at CERN, ISOLDE is one of the world’s lead-ing research facilities in the field of nuclear science. Radioactive Ion Beams (RIBs) are produced when 1.4 GeV protons transferred from the Proton Synchrotron Booster (PSB) to the facility impinge on one of the two available targets. The RIB of interest is extracted, mass-separated and transported to one of the experimental stations, either directly, or after being accelerated in the REX/HIE-ISOLDE post-accelerator. In addition to a Penning trap (REXTRAP) to accumulate and transversely cool the beam and a charge breeder (REXEBIS) to boost the charge state of the ions, the post-accelerator includes a linac with both room temperature (REX linac) and superconducting (HIE-ISOLDE linac) sections followed by three HEBT lines to deliver the beam to the different experimental stations. The latest upgrades of the facility as well as a comprehensive list of the RIBs delivered to the users of the facility and the operational experience gained during the last physics campaigns will be presented in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST035  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST036 Transverse Emittance Measurements of the Beams Produced by the ISOLDE Target Ion Sources 144
 
  • N. Bidault
    CERN, Meyrin, Switzerland
 
  The Isotope mass Separator On-Line DEvice (ISOLDE) is a Radioactive Ion Beam (RIB) facility based at CERN where rare isotopes are produced from 1.4 GeV-proton collisions with a target. The different types of targets and ion sources, operating conditions and ionization schemes used during the physics campaign results in extracted beams with various emittances. Characterizing the beam emittance allows deducing the transport efficiency to low-energy experimental stations (up to 60 keV) and the mass resolving power of the separators. We report on emittance measurements for different beams of stable elements extracted from surface and plasma ion sources. The dependence of the emittance on the different conditions of operation of the ion sources is investigated and the results are compared to previous measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST036  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)