Author: Bazrafshan, R.
Paper Title Page
MOPOMS001 Progress on Development of AXSIS: A Femtosecond THz-Driven MeV Accelerator and keV X-Ray Source 621
 
  • N.H. Matlis, M. Fakhari, F.X. Kärtner, T. Kroh, M. Pergament, T. Rohwer, M. Vahdani, D. Zhang
    CFEL, Hamburg, Germany
  • R. Bazrafshan, F.X. Kärtner, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • R. Bazrafshan, M. Vahdani
    University of Hamburg, Hamburg, Germany
  • M. Fakhari, D. Zhang
    DESY, Hamburg, Germany
  • F.X. Kärtner, T. Kroh
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
 
  Funding: This work was supported by KA908-12/1 of the Deutsche Forschungsgemeinschaft and by the ERC under the European Union’s Seventh Framework Program (FP7/2007-2013) through Synergy Grant AXSIS (609920).
We report on the design and progress in implementing a THz-driven relativistic electron accelerator and associated X-ray source, the AXSIS Facility at DESY. We have developed a full layout of the machine based on a THz gun followed by a multi-cycle dielectric loaded metal waveguide THz linear accelerator to generate 20 MeV level, 10 fs electron bunches. The required THz pulse energies are on the mJ-level for the gun and multi-10-mJ-level for the THz linac. Customized laser technologies have been developed allowing for the generation of these pulses up to 1 kHz repetition rate. The generated electron bunches are then focused into a counter propagating optical pulse ’optical undulator’ to generate X-rays in the 6-7 keV range. We will discuss the overall layout of the machine, status of its implementation and technical challenges in the different components as well as diagnostics of this new type of accelerator and X-ray source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS001  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS003 Single-Sided Pumped Compact Terahertz Driven Booster Accelerator 625
SUSPMF026   use link to see paper's listing under its alternate paper code  
 
  • T. Kroh, R. Bazrafshan, F.X. Kärtner, N.H. Matlis
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, M. Pergament, T. Rohwer, M. Vahdani, D. Zhang
    CFEL, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • K. Kawase
    JAEA, Kizugawa, Japan
 
  Funding: European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant ’Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy’ (609920).
Scaling the RF-accelerator concept to terahertz (THz) frequencies brings several compelling advantages, including compactness, intrinsic timing between the photoemission and driving field sources, and high field gradients associated with the short THz wavelength and high breakdown threshold. Recent demonstrations of such THz powered accelerators relied on two counter-propagating single-cycle THz pulses. However, to achieve high energy gains in the acceleration process high energy THz pulses are needed which in turn require complex optical setups. Here, we present on the development of a matchbox sized multi-layered accelerator designed to boost the 50 keV output of a DC electron gun to energies of ~400 keV that only requires a single THz pulse to be powered. An integrated tunable mirror inside the structure interferes the front of the driving THz pulse with its rear part such that the field in the interaction region is optimized for efficient acceleration. This reduces the complexity of the required optical setup. Such a compact booster accelerator is very promising as electron source in ultrafast electron diffraction experiments and as booster stage prior to THz based LINACs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS003  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS032 Compact-Two-Octave-Spanning Perpendicular Kicker of MeV Electrons Based on a Cubic Magnet Dipole Array 706
 
  • T. Rohwer, R. Bazrafshan, F.X. Kärtner, N.H. Matlis
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • R. Bazrafshan
    University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    CFEL, Hamburg, Germany
  • P. Vagin
    DESY, Hamburg, Germany
 
  Funding: This work has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant AXSIS (609920).
New compact particle acceleration structures, including but not limited to plasma, THz and direct laser driven accelerators, have in common that they cover a wide energy range of potential final energies and often show a large energy spread. Moreover, they may initially have a rather large emittance. To analyze the energy range of a single shot and/or to deflect the beam to safely dump the electrons away from an end-station requires an electron kicker covering a large energy range. Here, we present a magnetic dipole structure based on a 2D Halbach array. For the current experimental test accelerator in AXSIS, an electron beam in the energy range from 4 to 20 MeV is deflected by 90 degree and energetically dispersed. In direct contrast to a simple magnetic dipole, an array of cubic magnet blocks with tailored magnetization directions allows a focusing of the beam for both longitudinal and transverse directions at 90 degree bend. A generic algorithm optimizes the magnetic field array to the predefined deflection angle and divergence. The modular array structure, in combination with the algorithm enables a simple exchange of magnets to adapt for different beam parameters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS032  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT004 Design of a Compact 180-Degree Single-Shot Energy Spectrometer Based on a Halbach Dipole Magnet 2564
 
  • R. Bazrafshan, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, N.H. Matlis
    CFEL, Hamburg, Germany
  • F.X. Kaernter
    DESY, Hamburg, Germany
 
  In the AXSIS project at DESY, we develop compact THz accelerating structures for a table-top x-ray source. Acceleration is achieved by passing the electron beam through a dielectric-loaded waveguide powered by multi-cycle THz radiation. The final electron energy strongly depends on THz-power injected into the LINAC and timing. Thus in first experiments we expect large energy fluctuations and a large range of energies to cover. We designed an electron energy spectrometer for a wide range of final energies covering 5 to 20 MeV in a single-shot. Here, we present the design of an energy spectrometer which uses a compact dipole magnet based on the Halbach array concept to deflect the electron beam through a 180° path intercepted by a Fiber Optic Scintillator (FOS) mounted inside the vacuum perpendicular to the beam. The 180-degree bending geometry provides the possibility of having the focus point of all energies at the same distance from the magnet edge which makes the design simpler and more compact. It also removes the necessity of installing a safety dipole at the end of the accelerator. A slit system at the spectrometer entrance increases resolution to better than 0.2%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT004  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT005 Field Enhanced, Compact S-Band Gun Employing a Pin Cathode 2567
SUSPMF020   use link to see paper's listing under its alternate paper code  
 
  • R. Bazrafshan, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, K. Flöttmann, F.X. Kaernter
    DESY, Hamburg, Germany
  • N.H. Matlis
    CFEL, Hamburg, Germany
 
  S-band RF-guns are highly developed for production of low emittance relativistic electron bunches, but need powerful klystrons for driving. Here, we present the design and first experimental tests of a compact S-band gun, which can accelerate electrons up to 180 keV powered by only 10 kW from a compact rack-mountable solid-state amplifier. A pin-cathode is used to enhance the RF electric field on the cathode up to 100 MV/m as in large-scale S-band guns. An electron bunch is generated through photoemission off a flat copper surface on the pin excited by a UV laser pulse followed by a focusing solenoid producing a low emittance bunch with 0.1 mm mrad transverse emittance for up to 100 fC bunch charge. We are currently in the conditioning phase of the gun and first experiments show good agreement with simulations. The compact gun will serve three purposes: (i) it can be used directly for ultrafast electron diffraction; (ii) as an injector into a THz booster producing 0.3MeV to 2 MeV electron bunches for ultrafast electron diffraction; (iii) The system in (ii) serves as an injector into a THz linear accelerator producing a 20 MeV beam for the AXSIS X-ray source project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT005  
About • Received ※ 21 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)