Author: Bate, C.
Paper Title Page
TUPOTK010 Nitric Acid Soaking after Imperfect Furnace Treatments 1211
SUSPMF105   use link to see paper's listing under its alternate paper code  
 
  • R. Ghanbari, A. Dangwal Pandey
    DESY, Hamburg, Germany
  • C. Bate
    University of Hamburg, Hamburg, Germany
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Annealings of niobium cavities in UHV or nitrogen atmospheres are crucial for the performance in the later cryogenic tests and operation. Recovery methods for imperfect annealing conditions have been discussed, and a more recent proposal, the so-called "nitric acid soak" has been studied here in detail. It shows surprising recovery potential, albeit the unclear origin of this improvement. We present our investigation on the several potential origins. For this, we used SEM, SIMS and XPS measurements of niobium samples to study the surface morphology and contaminations. We can reject the favored hypothesis on the origin of the improvement, and propose an alternative origin.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK010  
About • Received ※ 10 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK012 Nitrogen Infusion Sample R&D at DESY 1219
 
  • C. Bate
    University of Hamburg, Hamburg, Germany
  • A. Ermakov, D. Reschke, J. Schaffran
    DESY, Hamburg, Germany
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Funding: This work was supported by the Helmholtz Association within the topic Accelerator Research and Development (ARD) of the Matter and Technologies (MT) Program.
Many accelerator projects such as the ILC would benefit from cavities with reduced surface resistance (high Q-values) while maintaining a high accelerating gradient. A possible way to meet the requirements is the so-called nitrogen-infusion procedure on Niobium cavities. However, a fundamental understanding and a theoretical model of this method are still missing. One important parameter is the residual resistance ratio (RRR) which is related to the impurity content of the material. We report the investigated RRR on samples in a wide temperature range in a vacuum and under a nitrogen atmosphere. This comparison made it possible to make statements about the differences in the concentration of nitrogen by varying the temperature. The samples are pure cavity-grade niobium and treated in the same manner as cavities. For this purpose, a small furnace dedicated to sample treatment was set up to change and explore the parameter space of the infusion recipe. Care was taken to achieve the highest level of purity possible in the furnace and in a pressure range of 1.0·10-8 mbar in order to meet the high requirements of nitrogen infusion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK012  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)