JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUPOMS057: Design Study of HOM Couplers for the C-Band Accelerating Structure

@inproceedings{kim:ipac2022-tupoms057,
  author       = {D. Kim and S. Biedron and Z. Li and E.I. Simakov},
  title        = {{Design Study of HOM Couplers for the C-Band Accelerating Structure}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {1561--1563},
  eid          = {TUPOMS057},
  language     = {english},
  keywords     = {factory, GUI, damping, dipole, cavity},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-TUPOMS057},
  url          = {https://jacow.org/ipac2022/papers/tupoms057.pdf},
  abstract     = {{A cold copper distributed coupling accelerator, with a high accelerating gradient at cryogenic temperatures (~77 K), is proposed as a baseline structure for the next generation of linear colliders. This novel technology improves accelerator performance and allows more degrees of freedom for optimization of individual cavities. It has been suggested that C-band accelerating structures at 5.712 GHz may allow to maintain high efficiency, achieve high accelerating gradient, and be suitable beam dynamics with wakefield damping and detuning of the cavities. The optimization of the cavity shape was performed and we computed quality factor, shunt impedance, and beam kick factor for each of the proposed cavity geometries using CST microwave studio. Next, we proposed a configuration for higher order mode (HOM) suppression that includes waveguide slots running parallel to the axis of the accelerator. This presentation will report details of the parametric study of performance of the HOM suppression waveguide, and the dependence of HOM Q-factors and kick-factors on the cavity’s and HOM waveguide’s geometries.}},
}