JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for THPOPT007: High Bunch Charges in the Second Injection Beamline of MESA

@inproceedings{kalamaiko:ipac2022-thpopt007,
  author       = {A.A. Kalamaiko and K. Aulenbacher and M.A. Dehn and S. Friederich and C.P. Stoll},
  title        = {{High Bunch Charges in the Second Injection Beamline of MESA}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {2574--2576},
  eid          = {THPOPT007},
  language     = {english},
  keywords     = {electron, dipole, simulation, operation, acceleration},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-THPOPT007},
  url          = {https://jacow.org/ipac2022/papers/thpopt007.pdf},
  abstract     = {{MESA (Mainz Energy-recovering Superconducting Accelerator) is an accelerator with two laser-driven electron sources (polarized and unpolarized) operating at 100 kV which is under construction at the Johannes Gutenberg University in Mainz. The unpolarized electron source MIST (MESA Injector Source Two) allows to produce high charged electron bunches with charge up to 7.7 pC. This source and a Mott polarimeter will be arranged on the same height above the MESA injector main beamline. A parallel shifting beamline was developed which allows to transport high charged beam from the source MIST to the main MESA beamline. Moreover, the designed beamline allows to transport beam from the electron source STEAM to the Mott polarimeter. This report is dedicated to the design of the separation beamline which transports and compresses highly charged electron bunches from the electron source MIST to the first acceleration section of MESA.}},
}