JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOTK022: A Design Study of Injector System for Synchrotron Light Source

@inproceedings{kim:ipac2022-mopotk022,
  author       = {C. Kim and E.-S. Kim and C.S. Park},
  title        = {{A Design Study of Injector System for Synchrotron Light Source}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {485--488},
  eid          = {MOPOTK022},
  language     = {english},
  keywords     = {linac, electron, gun, cavity, simulation},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-MOPOTK022},
  url          = {https://jacow.org/ipac2022/papers/mopotk022.pdf},
  abstract     = {{This work presents a design study of a 200 MeV electron linear accelerator consisting of an electron gun, bunchers, and accelerator structures. We aimed to design the linac with low emittance and low energy spread. A coasting beam from a thermionic electron gun is bunched using a series of buncher cavities: sub-harmonic buncher (SHB), a pre-buncher (PB), and a Buncher. The bunched beam is then accelerated up to 200 MeV with 4 cascaded accelerating structures. The SHB was designed with one-cell standing wave structure for improving the bunching efficiency. The two types of the 500 MHz SHB were considered: elliptical and coupled-cavity linac types. We also investigated constant-gradient and constant-impedance types of 3 GHz multi-cell traveling wave resonators for following buncher cavities and accelerating structures. Depending on the type, geometries of each traveling wave structure (TWS) cavity were determined, and then the electromagnetic fields were calculated. RF powers and phases of each cavity along this linac system were optimized using beam dynamics simulation. Furthermore, the beam distributions in the transverse direction are adjusted using solenoid magnets in the lowenergy section as well as quad triplets in the high-energy section.}},
}