JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOPT067: Electron Beam Phase Space Reconstruction From a Gas Sheet Diagnostic

@inproceedings{cook:ipac2022-mopopt067,
  author       = {N.M. Cook and G. Andonian and A. Diaw and C.C. Hall and N.P. Norvell and M. Yadav},
  title        = {{Electron Beam Phase Space Reconstruction From a Gas Sheet Diagnostic}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {414--417},
  eid          = {MOPOPT067},
  language     = {english},
  keywords     = {simulation, electron, diagnostics, network, experiment},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-MOPOPT067},
  url          = {https://jacow.org/ipac2022/papers/mopopt067.pdf},
  abstract     = {{Next generation particle accelerators craft increasingly high brightness beams to achieve physics goals for applications ranging from colliders to free electron lasers to studies of nonperturbative QED. Such rigorous requirements on total charge and shape introduce diagnostic challenges for effectively measuring bunch parameters prior to or at interaction points. We report on the simulation and training of a non-destructive beam diagnostic capable of characterizing high intensity charged particle beams. The diagnostic consists of a tailored neutral gas curtain, electrostatic microscope, and high sensitivity camera. An incident electron beam ionizes the gas curtain, while the electrostatic microscope transports generated ions to an imaging screen. Simulations of the ionization and transport process are performed using the Warp code. Then, a neural network is trained to provide accurate estimates of the initial electron beam parameters. We present initial results for a range of beam and gas curtain parameters and comment on extensibility to other beam intensity regimes.}},
}