JACoW logo

Journals of Accelerator Conferences Website (JACoW)

'Journal of Accelerator Conferences Website' (JACoW) is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP3
Title Evaluation of Geometrical Precision and Surface Roughness Quality for the Additively Manufactured Radio Frequency Quadrupole Prototype
Authors
  • T. Torims, D. Krogere, G. Pikurs, A. Ratkus
    Riga Technical University, Riga, Latvia
  • A. Cherif, M. Vretenar
    CERN, Meyrin, Switzerland
  • N. Delerue
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Foppa Pedretti, M. Pozzi
    Rösler Italiana s.r.l., Concorezzo, Italy
  • S. Gruber, E. Lopez
    Fraunhofer IWS, Dresden, Germany
  • T. Otto
    TalTech, Tallinn, Estonia
  • M. Thielmann, P. Wagenblast
    TRUMPF, Ditzingen, Germany
  • M. Vedani
    POLIMI, Milano, Italy
Abstract A multidisciplinary collaboration within the I.FAST project teamed-up to develop additive manufacturing (AM) technology solutions for accelerators. The first prototype of an AM pure-copper radio frequency quadrupole (RFQ) has been produced, corresponding to 1/4 of a 4-vane RFQ*. It was optimised for production with state-of-the-art laser powder bed fusion technology. Geometrical precision and roughness of the critical surfaces were measured. Alt-hough the obtained values were beyond standard RFQ specifications, these first results are promising and con-firmed the feasibility of AM manufactured complex cop-per accelerator cavities. Therefore, further post-processing trials have been conducted with the sample RFQ to im-prove surface roughness. Algorithms for the AM techno-logical processes have also been improved, allowing for higher geometrical precision. This resulted in the design of a full 4-vane RFQ prototype. At the time of the paper submission the full-size RFQ is being manufactured and will undergo through the stringent surface quality meas-urements. This paper is discussing novel technological developments, is providing an evaluation of the obtained surface roughness and geometrical precision as well as outlining the potential post-processing scenarios along with future tests plans.
Footnotes & References * Torims T, et al. First Proof-of-Concept Prototype of an Additive Manufactured Radio Frequency Quadrupole. Instruments. 2021; 5(4):35. https://doi.org/10.3390/instruments5040035
Paper download TUOXSP3.PDF [0.872 MB / 5 pages]
Slides download TUOXSP3_TALK.PDF [10.031 MB]
Cite download ※ BibTeX LaTeXText/WordRISEndNote
Conference IPAC2022
Series International Particle Accelerator Conference (13th)
Location Bangkok, Thailand
Date 12-17 June 2022
Publisher JACoW Publishing, Geneva, Switzerland
Editorial Board Frank Zimmermann (CERN, Meyrin, Switzerland); Hitoshi Tanaka (RIKEN, Hyogo, Japan); Porntip Sudmuang (SRLI, Nakhon, Thailand); Prapong Klysubun (SRLI, Nakhon, Thailand); Prapaiwan Sunwong (SRLI, Nakhon, Thailand); Thakonwat Chanwattana (SRLI, Nakhon, Thailand); Christine Petit-Jean-Genaz (CERN, Meyrin, Switzerland); Volker R.W. Schaa (GSI, Darmstadt, Germany)
Online ISBN 978-3-95450-227-1
Online ISSN 2673-5490
Received 20 May 2022
Revised 11 June 2022
Accepted 12 June 2022
Issue Date 10 July 2022
DOI doi:10.18429/JACoW-IPAC2022-TUOXSP3
Pages 787-791
Copyright
Creative Commons CC logoPublished by JACoW Publishing under the terms of the Creative Commons Attribution 3.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI.