

WEXB02, IPAC2021 May 26th, 2021

Upgrading J-PARC Accelerator for Hyper-Kamiokande Project

Yoichi Sato* (KEK/J-PARC) On behalf of the J-PARC Accelerator Group

CONTENTS

- Introduction
- Operation status of MR with fast extraction
- MR upgrade plan
- Summary

Japan Proton Accelerator **Research Complex**

High Intensity Proton Accelerators

Facilities to use the secondary beams

J-PARC Facility (KEK/JAEA)

Currently 515 kW (MR FX)

LINAC 400 MeV Rapid Cycle Synchrotron Energy: 3 GeV The ALANTAN THE Repetition: 25 Hz **Design Power: 1 MW** leutrino Beam to Kamioka

> Currently 0.62 MW **Material and Life** Science Facility

相当面目的

Main Ring Top Energy : 30 GeV FX Design Power: 0.75 MW SX Power Expectation : > 0.1 MW

Currently 60 kW MR (SX)

Hadron Hall

Tokai to Hyper-Kamiokande

Neutrino Facility (2009 -) On going experiment

• Long baseline neutrino oscillation experiment (T2K)

 Observation of Electron Neutrino Appearance in a Muon Neutrino Beam Phys. Rev. Lett. 112, 061802 (2014)
 Restrict Possible Values of Neutrino CP Phase https://www.nature.com/articles/s41586-020-2177-0

515 kW at present (Design 750 kW)

Upgrade Plan for the Neutrino Experiment

- Hyper-Kamiokande experiment (HK) (2027 -)
- Far Detector
 Water Cerenkov
 Detector of
 10 times larger
 fiducial volume
 of Super-Kamiokande

• MR Beam Power Upgrade \rightarrow 1.3 MW

Hardware (MR, $\ensuremath{\mathsf{NU}}\xspace)$ and Beam dynamics

- (anti-)muon neutrino beam produced by 1.3MW proton beam
- New near detector

HK Main Goal: Discovery of CPV Precision measurements, mass hierarchy and exotic searches

CONTENTS

- Introduction
- Operation status of MR with fast extraction
- MR upgrade plan
- Summary

MR Design and Operation Modes

- Circumference 1567.5 m
- Three-fold symmetry
- 3 GeV injection and 30 GeV extraction
- Fast extraction mode (FX) for the neutrino Facility: 1 turn extraction.
- Slow extraction mode (SX) for the hadron hall: 2 s – spill extraction.

2000

1600

1200 800

400

Magnet Current (A)

Yoichi Sato, WEXB02, IPAC2021

10

Time (s) FX (2.48 s)

Beam power history of MR

Max. beam power :

Fast extraction ~ 515 kW (2.66 x10¹⁴ ppp), the world highest ppp in synchrotrons. Slow extraction ~ 60 kW (6.5 x10¹³ ppp) in 5.20 s cycle for users with the extraction efficiency of 99.5 %.

Typical Operation Status for FX

- Power : 515 kW
- Repetition : 2.48 sec
- 4 batch (8 bunch) injection during the period of 0.13 s
- 3.4e13 protons per bunch (ppb)
 × 8 @ Injection
- 2.66e14 ppp @ P3 (end of acceleration)
- Beam Loss : 800 W (*)
- Loss power is within the MR collimator limit of 2 kW
- Loss at 3-50BT : 100 W,
 - < 3-50BT collimator limit of 2 kW

NOTE *: Beam loss estimated with DCCT.

Beam Loss Localization with Collimators

- Four collimators and 3 absorbers are in operation with the total capacity of 2 kW.
- Beam losses are mostly localized at the collimator section.
- Hands-on maintenance is possible with minimum exposure of residual radiation.

J-PARC Tuning items for the Beam Loss Reduction performed till April 2021

- ① Injection beam quality: optimized RCS parameters, verified at 3-50BT monitors
- (2) Optics measurements and corrections needs $\sigma_{\beta x,y} < 4\%$
- ③ Transverse instability suppression: Intra-BunchFB, controlled chromaticity
- (4) 2nd harmonic RF to suppress space charge tune spread
- **(5)** Longitudinal beam loading compensation system
- **(6)** Third order resonance corrections
- **7** Tune optimization (injection & acceleration)

CONTENTS

- Introduction
- Operation status of MR with fast extraction
- MR upgrade plan
- Summary

Concept of the Upgrade Plan

- The beam power would be 1.1 MW with the beam loss of 1.7 kW if the cycle is 1.16 s.
- Beam study is necessary to reduce the beam loss and further beam loss localization.

	Number of accelerated protons	Bunch number	cycle (s)	Beam power (kW)	Beam loss (kW)	Notes
1	2.7e14 ppp	8	2.48	515	0.8	measurement
2	2.7e14 ppp	8	1.32	970	1.5	estimation
3	2.7e14 ppp	8	1.16	1100	1.7	estimation
4	3.3e14 ppp	8	1.16	1300	?	
30%gain Factor 2						

2021/5/26

Beam Power $\propto 30 \text{GeV}$ $\times 1/\text{T}_{\text{rep}}$ $\times \# \text{ of protons.}$

Faster acceleration

→ Mag PS, RF voltage, Transv FB Faster cycle

→ Mag PS, Inj/FX, Monitors,

Collimators, Data taking, … More protons

ightarrow Beam Dynamics, RF anode PS

J-MC New Power Supplies being Constructed

- New power supplies were designed for the faster cycle. -> higher output voltage
- The electric power supplier did not allow us a large power variation by the faster cycle.
- We decided to have capacitor banks for the energy recovery.

2021/5/26

Kurimoto

J-MC New Power Supplies being Constructed

New 3 buildings for the PSs were constructed (complete). Mass production of the PSs is in progress.

• All 6 bending magnet (BM) PS families were constructed and installed.

2 BMPSs were successfully tested in 1.3 s cycle, and stably operated over 50-hour.

Power variation reduced from input to output.
 Total input power estimation = half of present FX op.

• Current ripple at flat top was improved factor 10 in low freq.

• Installation of remaining power supplies in 2021.

All processes are on schedule for beam test in Jun 2022.

2021/5/26

T. Shimogawa et. al., IPAC2019

Installation Plan for RF Cavities

- Higher RF voltages are necessary for the faster cycling.
- The following numbers of RF cavities are necessary for the operation of 1.32 s and 1.16 s.

	2020	2022	202X	
MR Cycle	2.48 s	1.32 s	1.16 s	
FT3L 4GAP Cavities	7	9	11	
2 nd Harmonic Cavities	2	2	2	
Accelerating Voltage	300 kV	510 kV	600 kV	
2 nd Harmonic Voltage	110 kV	110 kV	110 kV	

Simulated longitudinal motion for 1.16 s cycle (including beam loading & long-SC)

M. Yamamoto

Upgrade of the anode power supplies are planned for the beam loading compensation. Yoshii

New LLRF system, having vector voltage FB

Ins A: 2 2nd harmonic cavities in Fall 2022

Ins B: 2 fundamental cavities in 202X

J-MAC Injection and Extraction Systems

Injection					
Kicker * (Inj. and Comp.)	Design work is in progress for the cooling of the matching box.				
Septum**	Magnet and power supply were replaced and ready for 1 Hz operation.				
Fast Extraction					
Kicker	HV charger was upgraded and ready for 1 Hz operation.				
Low Field Septum**	Magnets and PS constructed. Testing. Installation in 2021.				
High Field Septum**	Magnets constructed. Testing. Installation in 2021.				

* Inj Kickers need to manage beam induced current. Newly designed system demonstrated the surface temperature of their resisters below their threshold 150 °C for high voltage impulses (eq. 1.3 MW op.)

** Septum magnets are to be "EDDY" type by JFY 2022, having Less leakage field by the induced Eddy current and Large aperture (no septum coil). Countermeasure to reduce impedance is planned.

Relating [WEPAB204] S. Iwata

2021/5/26

15

J-PARS MR beam diagnostics monitors & intra-bunch feedback

Mission: Provide the diagnostics for realization of 750 kW – 1.3 MW beam operation in the J-PARC MR

Progress in 2017 – 2020:

New BLM signal processing circuit, Abort profile monitor and 16-electrodes monitor have newly started operation. DCCT covers 2.7 e14 ppp with factor 2 margin. All diagnostics devices contributed to beam power upgrade from 450 to 510 kW.

Task(1) Upgrade of the intra-bunch feedbackShorten the damping time (>30%)

Task (2) Upgrade of the BPM circuits Improve the position accuracy from $\sim 30 \,\mu$ m to $< 10 \,\mu$ m -> Eyes for finer optics **BPM detector** D Beam **Develop New Signal** Signal processing circuit Acquisition System Noise filter Attenuator/switch <u> Attenuator / switch</u> ADC /erified > 80 dB ability **FPGA** + Memory Large Data Storage **CPU** + **Network** is needed also

Yoichi Sato, WEXB02, IPAC2021

Task(3) OTR profile monitor in the MR

Measure the 2D profile and halo of the injected beam into the MR -> Eye for Halo collimation by COLs -> Eye for Halo reduction by optics

Motion mechanism for the target Ti-foil for the OTR & fluorescent plate

2021/5/26

3-50BT/MR Collimators, Halo monitors and Beam Dump

RCS

(3GeVSynchrotron)

BT OTR/FL

Neutrino

Beam-line

100m

Collimato

BT/MR collimators

Devices locate outside of MR physical aperture 81π mmmrad

 \rightarrow Halo should be absorbed in

3-50BT collimators : 2 kW capacity.

MR collimators: 2 kW \rightarrow 3.5 kW capacity upgrade in JFY2022.

 Beam halo monitors BT-OTR/FL (in use) MR-OTR/FL (to be installed in JFY2022) \rightarrow Halo measurement in diff. phase provide halo distribution in phase space and will help efficient halo cut by multiple jaws of the BT/MR collimators

To increase # of high intensity shots and perform efficient beam study, upgrade of beam abort dump is planned : 7.5 kW \rightarrow 30 kW in near future. Unield/Price Gold Conceptual Design by STFC RAL - KEK collaboration:: Graphite – Cu core with gas-cooling ituater Berign - tolerant ta leaks etc. Abort Dump FΧ RF D3 Hadron Exp.Hall

MR

+++++

(30 GeV Synchrotron)

MR OTR/FL

SX

 D^{2}

Beam Loss Localization with Collimators

At present 510 kW op. w 0.8 kW loss in 2.48 s cycle

- 4 collimators and 3 absorbers are in operation with the total capacity of 2 kW.
- Beam losses are mostly localized at the collimator section.
- Hands-on maintenance is possible with minimum exposure of residual radiation.

After JFY2022

- Higher repetition (< 1.32 s cycle) requires not only COL capacity increment but better loss localization to keep the present level of hands-on maintenance.
- Add new MR Collimators cover whole halo area of phase space, and initial halo will be cut in a single turn.
- 2-stage collimation will be studied for further beam loss localization

Further items to reduce beam loss in FX

Detail in

- T. Yasui [MOPPB229]
- Doctoral dissertation

- ✓ New scheme has been studied to correct the structure resonances (nx - ny, nx - 2ny).
- ✓ Enables to explore better operation point far from (21.35, 21.45), and further reduction of the beam loss

the horizontal dispersion function

ϕ y optimization Before

Dynamic aperture survey of single particle (SAD)

✓ Further beam study is necessary to apply the merit of wider tunability in high intensity operation.

Expected effect of controlling injection emittance (Optimizing RCS for MR)

Space charge beam simulation suggests reducing injection emittance will increase MR survival rate, in the case of ideal MR lattice. Based on this strategy, we have explored RCS optimization, and studied the error sources in MR lattice.

SC simulation: Effect of injection emittances on the beam survival of MR

Ideal MR lattice is adopted, as no error and optimized ϕ y minimizing the SC induced resonance of 8 v y=171 (improved lattice).

Beam survival is further improved with the small emittance beam from RCS (x 0.9, x 0.8, x 0.7)

H. Hotchi

In JFY2020, RCS optimization has been done for MR beam for 1.3 MW eq. protons per bunch. Beam emittance was reduced with the new tune setting in RCS.

- $\varepsilon x : 4\%$ smaller
- εy : 13% smaller

Possibility of new operation point

- \checkmark Further reduction of the beam loss is needed.
- ✓ High intensity operation near the present operation tune (21.35, 21.45), is restricted by the structure resonances nx 2ny=-21, nx ny = 0.
- ✓ ϕ_y optimization is under discussed.
- New operation working points have been searched for 4 $\times 10^{13}$ ppb.
- Beam survivals are simulated at (21.40, 20.45),
 (22.20, 19.40), (22.18, 22.40) for better survival than (21.35, 21.45).
- \checkmark Beam study is necessary.

¹⁹21

21.5

22

22.5

vx

J-PARS Tuning items for the Beam Loss Reduction *till April 2021* \rightarrow after JFY2022

- Injection beam quality: optimized RCS parameters, verified at 3-50BT monitors (1)
- (2)needs $\sigma \beta_{x,y} < 4\%$ *Optics measurements and corrections*
- *Transverse instability suppression: IntraBunchFB, controled chromaticity* (3)
- (4)2nd harmonic RF to suppress space charge tune spread
- (5)Longitudinal beam loading compensation system
- (6)Third order resonance corrections
- (7)*Tune optimization (injection & acceleration)*

Beam Tunings after JUNE 2022 for the Upgrade 2.48 s \rightarrow 1.32 s cycle

- *Re-tune ALL existing ITEMs* ① ~ ⑦ with NEW HARDWARES NOTE: Diff. points (ramping pattern, impedance, leakage field, …) T. Asami [THPAB245]
- Achieve better beam loss localization at collimator area **twice efficiency** to keep hands-on maintainability with MR-new-collimator-system and Halo Monitors (BT & MR-OTR)
- Find error sources in optics and make countermeasures
- Explore new beam dynamics to increase 30% more protons per bunch

V.=21

21.2

21.1

Simulated tune shift of MR Power 500 kW

(Tune Spread 0.4)

based on the measured transverse

emittances and bunching factor

 $2v_{2}=43$

 $v_{-2}v_{=-2}$

21.3

21.4

 $v_{+2}v_{=64}$

Vy

21.4

21.3

21.2

21.1

21.5

V.

120

100

80

60

- (8)

2021/5/26

J-PARC

Mid-term Plan of MR

FX: The higher repetition rate scheme : Period 2.48 s \rightarrow 1.32 s for 750 kW.

(= shorter repetition period)

→ 1.16 s for 1.3 MW

SX: Mitigation of the residual activity for the beam power upgrade

	JFY	2020	2021	2022	2023	2024	2025	2026	2027	2028
	Event		Long Shut	down						
	FX power [kW] SX power [kW]	515 55	- 60-70	>700 >80	800 >80	900 >80	>1000 >80	>1100 ~100	>1200 ~100	1300 ~100
	Cycle time for Fast Extraction New Magnet PS	2.48s Mass P Installat	Production ion/Test	1.32s	1.32s	1.32s	1.32s	<1.32s	<1.32s	1.16s
	RF system upgrade 2 nd RF system upgrade			-						
	Collimator system		Add.colli. (3.5kW)							
	Injection system	cker PS im pta manufa st	provement acture	}						
	Beam Monitors (BPM circuits)									
2021/5/26	SX: Diffuser/Bent crystal/VHF Local shield	+					-			

MR FX Beam Power Projection

JUL. 2021 – MAR. 2022 New Magnet Power Supply, New 2nd harmonic RF systems, New FX devices, Collimator upgrades, …

APR. – **MAY 2022** High power test for new devices w/o beam

JUN 2022 FX beam tuning for 1.32 s cycle

FALL 2022 Start user operation in 1.32 s cycle

Summary

Accelerator upgrade steps

[by JFY2022] To the original target of 750 kW with the 1.32 s cycle.

- Magnet power supply, RF, Injection and extraction devices, Collimators, Monitors, Control [by JFY2028] To the beam power of 1.3 MW.
- RF, BPM upgrade
- Further beam study for beam loss reduction, localization, instability damping.

Upgrade for 1.3 MW, necessary for HK, was launched as in schedule

- The faster cycling : 2.48 s (present for T2K) \rightarrow 1.16 s
- The accelerated protons : 2.7E14 ppp (present for T2K) \rightarrow 3.3E14 ppp.

Supplementary slides

- Long-term plan for Multi-MW
- Presentations of J-PARC in IPAC2021

Long term plan for Multi-MW

- 3.2 MW with a new 8-GeV Booster in J-PARC
- 9 MW with a 9-GeV proton driver in the KEKB Tunnel after the B-factory project.

For the acceleration in the 2nd to 4th straight section, the ILC cavity is adopted.

- Peak current : 100 mA (pulse)
- Beam duty : 1 %
- Beam power : 9 GeV x 0.1 A x 1 % = 9 MW

R&Ds: High duty horn, higher gradient SC cavity, high power target...

27

Main Ring [MOPAB229] Takaaki Yasui, Compensations of Third-Order Resonances in J-PARC MR [TUPAB315] Ishii Koji, Development of Disaster Prevention System for Accelerator Tunnel [WEXB02] Yoichi Sato, Upgrading J-PARC Accelerator for Hyper Kamiokande Project [WEPAB178] Fumihiko Tamura, Non-adiabatic longitudinal bunch manipulation at flattop of the J-PARC MR [WEPAB192] Ryotaro Muto, Simulation Study on Double Diffuser for Loss Reduction in Slow Extraction at J-PARC Main Ring [WEPAB201] Kyohei Noguchi, 8 Gev Proton Beam Commissioning and Extinction Measurement for the COMET Experiment at J-PARC Main Ring [WEPAB204] Soma Iwata, Layout of the new septum magnets for fast extraction in J-PARC Main Ring [THPAB245] Takashi Asami, A simulation study of beam pipe eddy current effects on beam optics

RCS

[MOPAB174] Pranab Saha, Foil hits reduction by minimizing injection beam size at the foil in J-PARC RCS [TUPAB201] Masanobu Yamamoto, Vacuum Tube Operation Tuning for a High Intensity Beam Acceleration in J-PARC RCS [TUPAB207] Lucas Schaper, J-PARC RCS: Recent Efforts Towards a Higher Beam Power Beyond 1 MW [WEPAB177] Hidefumi Okita, Consideration of triple-harmonic operation for the J-PARC RCS [WEPAB179] Kazami Yamamoto, Recent status of J-PARC Rapid Cycling Synchrotron [WEPAB245] Yoshihoro Shobuda, A Possible Modification of Ceramic Chambers in the Injection Area at the RCS in J-PARC [WEPAB337] Junichiro Kamiya, Some methods of making titanium vacuum chamber act as getter pump for UHV/XHV

LINAC

[WEPAB297] Ersin Cicek, A Recent Upgrade on Phase Drift Compensation System for a Stable Beam Injection at J-PARC Linac

