12th International Particle Accelerator Conference

Recent results and future perspectives for highquality electron beams from plasma accelerators

R. Pompili (LNF-INFN) riccardo.pompili@lnf.infn.it

On behalf of the SPARC_LAB collaboration

Laboratori Nazionali di Frascati

Particle accelerators

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams

Wikipedia

According to the De Broglie hypothesis, larger is the particle **energy** better is the **spatial resolution** at which matter can be investigated

Today use of particle accelerators

High-energy and nuclear physics Sources of synchrotron and FEL radiation Medical/industrial applications

Why a bike? Because of the accelerator size...

12th International Particle Accelerator Conference - IPAC'21

Conventional RF technology

The power stored in the cavity cannot grow to infinite

RF breakdown: imperfections on the cavities_ can trigger sparks and damage the structure

There exists a maximum tolerable accelerating field

RF technology uses high power microwaves in resonant cavities with metallic walls.

Typical RF frequencies are in GHz range.

The cavities dimensions are of the order of the microwaves wavelength (1-60 cm)

Use of plasma to exceed RF limits

States of Matter

Plasma is the 4th state of matter and is made of free electrons and positively charged ions

It is typically made by heating a gas until its electrons have sufficient energy to escape from the (positive) nuclei **Being already ionized, the plasma cannot be "damaged" by any spark and can thus sustain huge fields**

12th International Particle Accelerator Conference - IPAC'21

Acceleration in a ionic bubble

From Maxwell's equations, the electric field in a (positively) charged sphere with uniform density n_i at location **r** is

$$\vec{E}(r) = \frac{q_i n_i}{3 \epsilon_0} r$$

The field is **increasing** inside the sphere

Let's put some numbers

5/26

$$n_i = 10^{16} \text{ cm}^{-3}$$

 $R = 0.5 \lambda_p = 150 \mu m$

Generation of the ionic bubble

The **driver** creates the positive sphere (or **bubble**). It can be a

- particle bunch (PWFA)
- laser pulse (LWFA)

The **witness** can be

- Self-injected
- Externally injected

$$E_0 = \frac{m_e c \omega_p}{e} \simeq 96 \sqrt{n_0 (cm^{-3})} \rightarrow E_0 \approx 10 \frac{GV}{m} @ n_0 = 10^{16} cm^{-3}$$

12th International Particle Accelerator Conference - IPAC'21

6/26

Milestones in LWFA

Steinke, S., et al. "Multistage coupling of independent laserplasma accelerators." Nature 530.7589 (2016): 190-193.

Faure, Jérôme, et al. "Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses." Nature 444.7120 (2006): 737-739.

Mangles, Stuart PD, et al. "Monoenergetic beams of relativistic electrons from intense laser–plasma interactions." Nature 431.7008 (2004): 535-538.

Milestones in PWFA

Electron source system erated electrons on the scintillator scree 20-MeV radio-. Radio-frequency our frequency ~700 MeV Dipole Electron beam Dipole 10-m Rb plasm Proton bear Imaging station 1 OTR, CTR screens Rb flask Quadrupoles cintillator ecre Electron spectromete Electron bunch Long proton bun Laser Imaging station 2 Capti -15 -10 -15 -10 -20 -5 (mm) ۶

Adli, Erik, et al. "Acceleration of electrons in the plasma wakefield of a proton bunch." Nature 561.7723 (2018): 363-367.

Blumenfeld, Ian, et al. "Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator." Nature 445.7129 (2007): 741-744.

Litos, M., et al. "High-efficiency acceleration of an electron beam in a plasma wakefield accelerator." Nature 515.7525 (2014): 92-95.

Standard vs plasma accelerators

12th International Particle Accelerator Conference - IPAC'21

9/26

The most critical part of a plasma-based accelerator is given by its typical size

The bubble is tiny (tens/hundreds of micron scale)

The witness beam must be even smaller!!!

300 µm

1 mm

11/26

Beam quality

Energy spread

Emittance

12/26

Recent advances toward high-quality

400

300

200

100

0

Deng, Aihua, et al. "Generation and acceleration of electron bunches from a plasma photocathode." Nature Physics 15.11 (2019): 1156-1160.

Lindstrøm, Carl Andreas, et al. "Energy-spread preservation and high efficiency in a plasma-wakefield accelerator." Physical review letters 126.1 (2021): 014801.

SPARC_LAB facility

Ferrario, M., et al. "SPARC_LAB present and future." NIMB 309 (2013): 183-188.

13/26

12th International Particle Accelerator Conference - IPAC'21

50 100 150

200 250

14/26

Experience with plasma @ SPARC

Activities with the high-brightness SPARC photo-injector

Plasma characterization

Biagioni, A., et al., Journal of Instrumentation 11.08 (2016): C08003.

Plasma-dechirper

V. Shpakov et al. Phys. Rev. Lett. 122, 114801 (2019)

Focusing with active-plasma lenses

Pompili, R., et al., Physical review letters 121.17 (2018): 174801. Pompili, R., et al., Applied Physics Letters 110.10 (2017): 104101.

• Active-Plasma lenses

- Van Tilborg, J., et al. "Active plasma lensing for relativistic laser-plasma-accelerated electron beams." Physical review letters 115.18 (2015): 184802.
- Van Tilborg, J., et al. "Nonuniform discharge currents in active plasma lenses." Physical Review Accelerators and Beams 20.3 (2017): 032803.
- Lindstrøm, C.A., et al. "Emittance preservation in an aberration-free active plasma lens." Physical review letters 121.19 (2018): 194801.
- Plasma "dechirper"
 - Wu, Y. P., et al. "Phase space dynamics of a plasma wakefield dechirper for energy spread reduction." Physical review letters 122.20 (2019): 204804.
 - D'Arcy, R., et al. "Tunable plasma-based energy dechirper." Physical review letters 122.3 (2019): 034801.

16/26

Plasma acceleration experiment

Assisted beam-loading technique

Pre-chirp to compensate wakefield slope

12th International Particle Accelerator Conference - IPAC'21

Beam configuration

Two-bunches configuration produced directly at the cathode with laser-comb technique

200 pC driver (charge increased up to 350 pC) followed by witness bunch (20 pC)

Ultra-short durations (200 fs + 30 fs)

Separation approximately equal to ³/₄ of the plasma wavelength (~1 ps)

18/26

12th International Particle Accelerator Conference - IPAC'21

Plasma acceleration results (1)

4 MeV acceleration in 3 cm plasma with 200 pC driver

~133 MV/m accelerating gradient

2x10¹⁵ cm⁻³ plasma density

First ever demonstration of energy spread reduction

Spread from 0.2% to 0.12%

nature

<u>19/26</u>

physics

Energy spread minimization in a beam-driven plasma wakefield accelerator

R. Pompili[®]¹[⊠], D. Alesini¹, M. P. Anania[®]¹, M. Behtouei¹, M. Bellaveglia¹, A. Biagioni¹, F. G. Bisesto¹, M. Cesarini[®]^{1,2}, E. Chiadroni¹, A. Cianchi³, G. Costa¹, M. Croia¹, A. Del Dotto[®]¹, D. Di Giovenale¹, M. Diomede¹, F. Dipace[®]¹, M. Ferrario¹, A. Giribono[®]¹, V. Lollo¹, L. Magnisi¹, M. Marongiu[®]¹, A. Mostacci[®]², L. Piersanti[®]¹, G. Di Pirro¹, S. Romeo¹, A. R. Rossi⁴, J. Scifo¹, V. Shpakov¹, C. Vaccarezza¹, F. Villa[®]¹ and A. Zigler^{1,5}

R. Pompili

12th International Particle Accelerator Conference - IPAC'21

Plasma acceleration results (2)

By increasing the driver charge a larger ion bubble is produced

Achieved 7 MeV acceleration in 3 cm plasma with 350 pC driver

~233 MV/m accelerating gradient 2x10¹⁵ cm⁻³ plasma density

Energy spread of the accelerated beam slightly increased

Energy spread from 0.2% to 0.26%

Still order of magnitudes lower spread with respect to previous experiments

20/26

PWFA characterization completed by measuring the witness emittance

Measurement of its normalized emittance through quadrupole scan technique

We found emittance increase from 2.7 um to 3.7 um (rms) during acceleration

Demonstration of FEL driven by PWFA

Proof-of-principle experiment to demonstrate high-quality PWFA acceleration able to drive a Free-Electron Laser

Witness is completely characterized (energy, spread, X/Y emittance) allowing to match it into the undulators beamline

Jitter is online monitored with Electro-Optical Sampling (EOS) diagnostics

Imaging spectrometer with iCCD used to detect FEL radiation

In collaboration with

FEL driven by PWFA: first spectrum

Single-shot spectrum of SASE FEL radiation emitted at 830 nm 6 undulators matched on the plasma accelerated witness bunch Clear signals, reproducible and stable (<10% disregarded shots)

12th International Particle Accelerator Conference - IPAC'21

FEL driven by PWFA: exponential gain

Exponential gain of FEL radiation energy

Data taken with 6 (Si) photo-diodes downstream the undulators

12th International Particle Accelerator Conference - IPAC'21

EuPRAXIA@SPARC_LAB

Pictorial view of the new infrastructure @ LNF

12th International Particle Accelerator Conference - IPAC'21

Thanks!

R. Pompili (LNF-INFN) riccardo.pompili@lnf.infn.it

On behalf of the SPARC_LAB collaboration

Laboratori Nazionali di Frascati

