International Particle Accelerator Conference (IPAC) 2021

Design of a Circular Waveguide TM₀₁ Mode Launcher with Wire Loop Feed (Program Code WEPAB349)

Ashish Chittora Assistant Professor (EEE) BITS Pilani, K K Birla Goa Campus Goa, India

Circular Waveguide TM₀₁ mode

- TM₀₁ mode is second mode in cylindrical waveguide (after TE₁₁ mode)
- Field pattern
 - Diverging E-field
 - Transverse H-field loops
- TM₀₁ mode cutoff
 fc = 2.405c/2πr
 r = waveguide radius
 - c = speed of light

Circular Waveguide TM₀₁ mode

- Useful mode for low-loss propagation (or transmission) of power using waveguides
- Lower cutoff frequency relative to TE₀₁ mode
- Easy generation methods
- Easy conversion to (or from) Coaxial-TEM and circular TE₁₁ modes.
- Accelerator cavities

Applications of TM₀₁ launcher

- Generation and detection of TM₀₁₀ mode in accelerator cavity
- Waveguide rotary joint
- CPT (cone penetration test) underground sensor device
- As mode-launcher and detector in Single Wire or Single Conductor Transmission line (SWTL or SCTL or Gobau-line) communication
- Low power testing of High power microwave components

TM₀₁ Launchers in literature

FIGURE 1. Different elements of the TM₀₁ transducer: the converting section (part C) and the full H-plane feeding network composed by the T-junction (part A) and the two 180° bends (parts B).

IPAC 2021

The proposed launcher design

TABLE I. Design parameters of the proposed TM₀₁ mode launcher

Туре	r ₁	r ₂	I	f ₀
Circular loop	1.8 cm	1.8 cm	2.4 cm	3.2 GHz
Elliptical loop	2021 2.0 cm	1.5 cm	2.0 cm	3.2 GH ⁶

Process of TM_{01} mode generation

Simulated results

Effect of parametric variation on the S_{21} parameter of the modelauncher with Circular loop feed.

IPAC 2021

Experimental set-up

(a) Fabricated circular loop feed mode-launcher with bi-conical detector. (short metal plate removed for inside view) and (b) Illustration of measurement setup for circular loop feed mode launcher (waveguide shown transparent). IPAC 2021

Simulated and Measured Results

Measured S-parameters of the mode-launcher with (a) Circular and (b) Elliptical loop feed.

Radiation pattern results

Measured radiation pattern (normalized) for the circular loop feed mode-launcher at 3.2 GHz frequency.

Comparison of the proposed designs with previous TM_{01} mode launcher designs

Paper	$\frac{Length}{\lambda}$	<u>Diameter</u> λ	S ₂₁ peak (dB)	Relative Bandwidth	Coupling Principle
[6]	0.58	1.05	-0.01	33.8%	E-field
[7]	1.33	0.42	-	2.2%	E-field
[8]	3.59	0.94	-0.01	3.1%	E-field
[9]	0.34	0.9	-0.27	21.5%	E-field
[10]	0.38	0.86	-0.08	16.7%	E-field
[11]	0.44	1.08	-0.20	44%	E-field
Circular	0.44	0.96	-0.01	3.1%	H-field
Elliptical	0.37	0.96	-0.01	3.1%	H-field

Conclusion

- Magnetic field based TM₀₁ mode generation
- High efficiency of conversion (upto 98%)
- Narrow bandwidth (3.1%) at operating frequency 3.2 GHz
- Compact size and shape of launcher
- Operating frequency is sensitive to the loop size

References

- 1. J. Liu, H. Zha, J. Shi, J. Qiu, H. Chen, X. Wu and Z. Wang, "High-Power Test of a Compact X-Band RF Rotary Joint", 9th International Particle Accelerator Conference, pp. 4017-4019, 2018.
- 2. N. D. T. Nguyen, D. V. Le, N. Meratnia and P. J. M. Havinga, "In-Pipe Wireless Communication for Underground Sampling and Testing," *GLOBECOM 2017 2017 IEEE Global Communications Conference*, Singapore, pp. 1-7, 2017.
- 3. A. Sharma, A. T. Hoang and M. S. Reynolds, "A Coplanar Vivaldi-Style Launcher for Goubau Single-Wire Transmission Lines," in *IEEE Antennas and Wireless Propagation Letters*, vol. 16, pp. 2955-2958, 2017.
- 4. A. Chittora, S. Singh, A. Sharma and J. Mukherjee, "A Tapered Metallic Baffle TM₀₁ to TE_{11Y} Mode Converter with TE_{11X} Mode Transmission Capability," *IEEE Microwave and Wireless Components Letters*, vol.25, no.10, pp.633-635, Oct. 2015.
- 5. S. B. Chakrabarty, V. K. Singh and S. B. Sharma, "TM₀₁ mode transducer using circular and rectangular waveguides", *Intl. Journal of RF and Microwave Comp. Aid. Engg.*, vol. 20, no. 3, pp. 259-263, 2010.
- 6. A. Chittora, S. Singh, A. Sharma and J. Mukherjee, "Design of wideband coaxial-TEM to circular waveguide TM₀₁ mode transducer," 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1-4, Davos, 2016.
- M. F. Palvig, O. Breinbjerg, P. Meincke and E. Jørgensen, "Demonstration of TM₀₁ Circular Waveguide Mode in Matched Feeds for Single Offset Reflectors," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, pp. 723-724, 2018.
- X. Cui *et al.*, "High-Efficiency, Broadband Converter From A Rectangular Waveguide TE10 Mode to A Circular Waveguide TM₀₁
 Mode for Overmoded Device Measurement," in *IEEE Access*, vol. 6, pp. 14996-15003, 2018.
- 9. J. Kumar, R. Singh, V. P. Anitha, "Prototype TM₀₁ mode launcher by using Pagoda-shaped geometry in circular waveguide for microwave plasma interaction experiments at SYMPLE", *Int. Journal of RF and Microwave Computer Aided Engg.*, 2019.
- 10. J. R. Montejo-Garai, J. A. Ruiz-Cruz and J. M. Rebollar, "Design of a Ku-Band High-Purity Transducer for the TM₀₁ Circular Waveguide Mode by Means of T-Type Junctions," in *IEEE Access*, vol. 7, pp. 450-456, 2019.
- 11. Lei Xia, Jia-Lin Li, Zhuang Ji, Shan-Shan Gao, "An in-line coaxial-to-circular waveguide transition at X band", *Journal of Electrical Engineering*, Vol. 71, no. 1, pp. 55–59, 2020.
- 12. Q. Balzano and K. Siwiak, "The near field of annular antennas," in *IEEE Transactions on Vehicular Technology*, vol. 36, no. 4, pp. 173-183, Nov. 1987.
- 13. F. M. Greene, "The near-zone magnetic field of a small circular-loop antenna." *Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, pp. 319,* 1967.

Thank you Email : ashish.chittora22@gmail.com

सर्वे भवन्तु सुखिनः। (Prayers for happiness of everyone)