

COSY MODEL-MACHINE OPTIMIZATION For IPAC'21

26.05.2021 | I. Bekman, J. Hetzel | IKP-4, Forschungszentrum Jülich GmbH, Jülich, Germany

Member of the Helmholtz Association

Model: COSY in MAD-X

- COoler SYnchrotron (COSY)
- (un-/) polarized p+ and deuterons
- MAD-X lattice from Accelerator_DB [2] [5] [6]
- About 1500 parameters:
 - (6x) * (BPMs+Viewer)
 - + (8x) * (Steerer + Quads + Sexts)
 - + (8x) * Dipoles
 - + Dipole kicks
- Use parametrization to-the-best-knowledge from surveys, BBA, etc.

Motivation: Model vs. Machine

- Model prediction of the machine is imperfect
- Reliable for relative changes
- Discrepancy (offsets) for absolute values

 Improved Model would allow easier operation and might in turn indicate issues with the physical Machine, which are difficult to assess otherwise (element displacements, rotations)

Motivation: Model vs. Machine - ORM

- ORM: Orbit change for each steerer (67x BPMs on Y axis, 47x on X axis)
- e.g. BP#2:

Simulated vs. Measured

Machine: Measurements

The goal of this optimization

Find Model parameters to minimize the difference between observables measured at the **Machine** and simulated from the **Model**

- Measurements of several observables at a few benchmark points
- During beam time 2021KW05 (CBAC A014.3) [4]
 - Pure: minimal setting to achieve stable beam conditions
 - Production: optimized tune, dispersion, orbit correction, beam lifetime

Benchmark Points

- 3000MeV/c pure
- 3000MeV/c prod
- 970MeV/c pure
- 970MeV/c prod
- 600MeV/c prod

Observables

- $ightarrow \,$ for each Benchmark Point
 - Tune Q1,Q2 weight 2
 - Orbit Response Matrix (ORM) weight 1

Genetic Algorithm (GA)

- Due to complex correlations and vast phase-space of parameters Genetic algorithm was chosen
- DEAP framework [1] used for it's flexibility and multi-objective capability
- Exploration vs. Exploitation (\rightarrow)

multi-candidate solutions to avoid local optima

 Achieved with a set of solutions, applying stochastic Changes, Evaluating new solutions and Choosing a subset of better solution iteratively

GA: Individual and Fitness

Fittest: minimum difference between simulation and measurement

Individual	Fitness
a set of model variables (see below)	Σ weighted absolute (simulated - measured) \forall observables \forall benchmark points

Туре	Correction	Lim.	Unit	ldx.	
Dipole	shortening kick	[-3,3]	mrad	0	
Quad	roll (S-axis)	[-6,6]	mrad	25	
Quad	displacement X	[-1,1]	mm	81	
Quad	displacement Y	[-1,1]	mm	137	
Quad	displacement S	[-20,20]	mm	193	

Eval. 5x MAD-X sim, and 5x ORM calc $\Rightarrow \mathcal{O}(1sec \text{ wall-time})$ [3]

249 variables \Rightarrow i.e. genes

GA: Fitness from ORM

- XY-quadrants not simulated, likewise some BPMs without signal during measurement, thus not considered in fitness.
- e.g. BP#2: Simulated vs. Measured, abs(Difference)

sim_{init} meas |meas − sim_{init}| Normalize ORM part of the fitness by the number of entries

GA: Execution

- # Generations = 20..100
- # Individuals = 100..1000
 - pre-Mutate initial Population
- Selection Tournament over 5% of population

- Crossover (uniform)
 0.5 p./indi., 0.9 p/gene
- Mutation (custom)
 0.4 p./indi.,0.5 p./gene
 - Gaussian within gene limits (3 sigma)

GA: Results

GA for all variables - visualization of best setting in each generation

Comparison of top 3 settings for 6 runs

- Similar fitness reachable with many different configurations
- Displacement in S (variable idx.>= 193) is comparable across runs

GA: Results - Improvement of ORM

e.g. BP#2: Initial discrepancy vs. Post-GA discrepancy, improvement

- Improvement of correspondence of the Model to the Machine
- Not all parameters were free, unlikely to decimate all discrepancy

GA: Results - Improvement of ORM

improvement over all Benchmark Points, some more, some less

GA: Results - Improvement of Model Prediction

Summary and Outlook

- COSY Model and Measurements were used to improve the simulation
- Genetic Algorithm was used for the optimization
- Simultaneous optimization against 5 optics and several observables

Outlook

- Consider more measurement points and observables (Chromaticity, Orbit)
- Use ORM Simulation (vs. calc) to consider full ORMs (XY-quadrants)
- Include more variables, all rotations, effective element lengths, steerer calibration
- Parametrize correlations to reduce over-determination

Backup information

Contact

contact: i.bekman@fz-juelich.de, j.hetzel@fz-juelich.de

References and Further Reading

- Fortini F.-A., et al. "DEAP: Evolutionary algorithms made easy.", Journal of Machine Learning Research, 2171–2175(13), Jul. 2012.
- [2] Grote H., et al. "The MAD-X program (methodical accelerator design) version 5.05: User's reference manual.", CERN; http://mad.web.cern.ch/mad
- [3] Gläßle T., et al. (2021, May 4). "cpymad" (Version v1.8.1). Zenodo., http://doi.org/10.5281/zenodo.4736909
- [4] Bekman, I., Hetzel, J. (2020). "COSY Orbit Control Studies", 12th Meeting of the COSY Beamtime Advisory Committee, Darmstadt (Germany).
- [5] Weidemann, C., et al. (2016). "Model Driven Machine Improvement of COSY Based on ORM Data". (Genf): JACoW, Geneva, Switzerland.
- [6] Bekman, I., Hetzel, J. (2020). "Model-Related Applications", Annual Report 2020, Institut für Kernphysik, COSYJül-4427., Jülich, (Germany).

