LLRF Control and Synchronization System of the ARES Facility.

Sven Pfeiffer*, J. Branlard, F. Burkart, M. Hoffmann, T. Lamb, F. Ludwig, H. Schlarb, S. Schulz, B. Szczepanski, M. Titberidze, DESY, Hamburg, Germany

Abstract

The linear accelerator ARES (Accelerator Research Experiment at SINBAD) is a new research facility at DESY. Electron bunches with a maximum repetition rate of 50 Hz are accelerated up to 155 MeV. The facility aims for ultra-stable sub-femtosecond arrival-times and high peak-currents at the experiment, placing high demands on the reference distribution and field regulation of the S-band RF structures. In this paper, we report on the current status of the RF reference generation, facility-wide distribution, and the LLRF systems of the RF structures.

ARES Injector Overview

RF Synchronization System

MicroTCA.4 based LLRF System

First LLRF Measurements

Current RF-gun Regulation

- Optimized to 83% ADC dynamic range for max. operating point
- Currently operated at 70MV/m (63%)
- Pulse to pulse adaptation of the drive signal
- Calibrated probe signal as regulation signal
- First results:
 - Beam position as time of interest
 - Average of 51 sampling points
 - Expected noise bandwidth < 2.45 MHz (factor 10 higher than gun BW)
 - Slow drifts are corrected
- Achieved probe stability of 0.013% and 0.016 deg by pulse to pulse adaptation

Current TWS Regulation

- Optimized to 100% ADC dynamic range for max. operating point
- Currently operated at 75MV/m (75%)
- Pulse to pulse adaptation of the drive signal
- Regulation signal:
 1. Calibrated 1st probe signal or
 2. Sum of 5 calibrated probe signals to minimize temperature effects along the structure
- Stability analysis for the 2 regulation concepts as next topic

Conclusion & Outlook

- LLRF systems for gun and TWS1/TWS2 operational
- RF chain analysis does not show larger noise sources
- Systems calibrated with beam and optimized on digital level
- Passive RF distribution and direct laser to RF synchronization sufficient for first commissioning
- MO upgrade to reduce amplitude/phase noise (Polam-X LLRF system will be installed)
 - Up-conversion module from 3 GHz to 12 GHz
 - Down-conversion module from 12 GHz to 3 GHz
- Upgrade REFM for interferometric transmission line stabilization
- TWS1 and TWS2 regulation optimization
- Activate and optimize intra-pulse feedback

sven.pfeiffer@desy.de

RF Synchronization

- Passive RF distribution (only short distances)
- Reference Modules (REFM) in each rack
 - Currently for signal amplification and distribution
 - Upgrade option for interferometric transmission line stabilization