

新北京大学

Beam dynamics design of a 162.5MHz superconducting RFQ

accelerator

Y.Xia, Z.Wang*, H.P.Li, Q,Y.Tan and Y.R.Lu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

Abstract

Superconducting(SC) RFQ has lower power consumption, larger aperture and higher accelerating gradient than room temperature RFQ. We plan to design a 162.5MHz SC RFQ to accelerate the 30 mA proton beams from 35 keV to 2.5 MeV, which will be used as a neutron source for BNCT and neutron imaging project. At an inter-vane voltage of 180kV, the beam dynamics design was carried out with acceptable peak surface electric field, high transmission efficiency, and relatively short cavity length.

Design considerations

- Goal: very high accelerating efficiency and very high beam transmission efficiency
- Acceleration gradient: the lowest possible peak electric field and magnetic field should be used to obtain the highest possible acceleration effect
- **Beam focusing force**: proportional to the inter-vane voltage, inversely proportional to the aperture

appropriate values of a, m, and φ

核物理与核技术国家重点实验室(北京大学) State Key Laboratory of Nuclear Physics and Technology (Peking University)

Beam dynamics design

Parameters	Value	Parameters	Value
Frequency [MHz]	162.5	Inter-vane voltage [kV]	180
Input beam energy [MeV/u]	0.035	Peak surface electric field[MV/m]	30.4
Output beam energy [MeV/u]	2.54	Kilpatrick coefficient	2.24
Focusing parameter B	9.0	Acceleration gradient [MV/m]	0.77
Average aperture r ₀ [mm]	8.5	Input transverse normalized RMS emittance	0.200
Minimum aperture a [mm]	5.4	[mm:mrad]	
Modulation m	1~2.069	Output longitudinal normalized RMS emittance	0.12
Synchronous phase φ [°]	-90~-30	Transmission efficiency [%]	99.9
Number of cells	184	Tenothim	3.27
Peak beam current [mA]	30		0.27

Beam dynamics design (PARMTEQM results)

Beam dynamics design (IMPACT-T results)

Particles phase-space distribution at the exit of RFQ

核物理与核技术国家重点实验室(北京大学) State Key Laboratory of Nuclear Physics and Technology (Peking University)

Redundancy Study

Transmission efficiency of the RFQ versus the input beam Twiss parameters

Transmission efficiency of the RFQ versus the input transverse emittance