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Introduction



An Unexpected Pattern

Dynamics of Ultracold Ion Beamlets [Murphy (2014)]

Rather than smoothly overlapping, the evolving beamlets formed a pattern

which retains a distinct impression from each beamlet

• Structured nonuniformities in density and energy present limitations

for beam applications

− Loss of resolution in imaging techniques

− Decoherence of the radiation in a FEL

Murphy et al., Nat. Commun. 5, 4489 (2014)

Ultracold Electron Beamlet Dynamics Introduction A. J. Tencate (NIU), 2 / 9



Considering Electron Beamlets

Challenges and Applications

A related phenomenon was modeled for a pancake

electron bunch [Zerbe (2018)]

• The bunch density hollowed out in the

transverse dimensions

• Not yet observed experimentally for electrons

− Evolution dynamics occur on the scale

of the plasma frequency

A relevant application is the nanotip array cold

electron cathodes

• Beams from each nanotip will interact to

form a single beam

− Similar density pileup and structures

may form for these cathodes

Zerbe et al., Phys. Rev.

Accel. Beams 21, 064201

(2018)

Silicon Nanotip Array

Fabricated at NIU
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Simulation Methods



Creating the Initial Beamlet Distibutions

Structure the Array Similar to [Murphy (2014)]

Generate an array of 8 beamlets surrounding a central beamlet

• Outer Beamlet Ring Radius: 0.5 mm

Beamlet Parameters

• Radius: 0.1 mm

• Length: 5 µm

• Charge: 1.6 fC

• Transverse Profile: Gaussian

• Longitudinal Profile: Uniform

Halo Parameters

• Radius: 1 mm

• Length: 5 µm

• Charge: 3.2 fC

• Transverse Profile: Uniform

• Longitudinal Profile: Uniform

The particle velocity is sampled from the Maxwell-Boltzmann distribution for a

given temperature T

f (v) =

(
m

2πkBT

)3/2

exp

(
−m||v||2

2kBT

)
,
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Accurate Simulation Of Electron Dynamics

Collisional N-body Code PHAD (particles’ high-order adaptive dynamics)

Divide domain equations into near and far regions

• Compute far forces via the FMM (fast

multipole method)

• Capture near interactions with the collisional

Simó integrator

• All scripts written for COSY Infinity

− A general purpose nonlinear-dynamics

scripting language

Performing Simulations

Simulations performed on the Gaea Cluster at NIU

• A hybrid CPU/GPU cluster

• 60 Infiniband connected nodes

− Two Intel Xeon X5650 2.66 GHz 6-core

processors

− Total of 72 GB of RAM

M. Berz and K. Makino,

MSU (2017).

Center for Research and

Computing and Data
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Temperature and Density

Dependencies



Initial Evaluation Of Electron Beamlets

Observation of Pattern Formation for Electrons

Set the initial beamlet and halo temperatures to 1 K and 10 K

• High density spokes form at 2 ns, but outer wheel is less dense

− At 4 ns, the full wheel-and-spokes pattern is seen

− Interaction between beamlets pushes density higher than the

interaction with the halo alone

Electron charge density ( µC/m3) at time t = 0 ns, 1 ns, 2 ns, 3 ns, and 4 ns from left to right
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Initial Evaluation Of Electron Beamlets

Evolution of the Electron Temperature

Coulomb explosion leads to a rapid increase in max transverse temperature

• Mean temperature shows same trend but order of magnitude lower

• After a short increase, the minimum temperature remains consistent

− Cold temperature is preserved for a subset of particles
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Initial Evaluation Of Electron Beamlets

Evolution of the Electron Temperature

Initial temperature explosion is concentrated to the exterior of the ring

• Beamlet interactions have a transverse cooling effect

− They are buffered by halo electrons

• Core of the final beam remains relatively cool

Electron temperature (K) above and charge density ( µC/m3) below at time

t = 0 ns, 1 ns, 2 ns, 3 ns, and 4 ns from left to right
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Varying The Initial Temperatures

Beamlet: 10 K, Halo: 100 K

Increasing beamlet and halo temperatures leads to a decrease in resolution

• High density spokes form at 2 ns, but outer wheel is less dense

− Inherent thermal noise reduces the cooling effect of neighboring

beamlets and of the halo

− Halo density decreases via diffusion

Electron temperature (K) above and charge density ( µC/m3) below at time t = 0 ns, 1.3 ns, 2.0 ns, 2.7 ns
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Varying The Initial Temperatures

Beamlet: 100 K, Halo: 10 K

Heating up the beamlet temperatures nearly eliminates the patterns

entirely

• Hints of high density spokes are visible at 2 ns

− Large thermal noise impairs the symmetry cooling benefits

− The wheel-and-spokes pattern vanishes entirely for T > 100 K

Electron temperature (K) above and charge density ( µC/m3) below at time t = 0 ns, 1.3 ns, 2.0 ns, 2.7 ns
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Varying The Initial Temperatures

Beamlet: 0.2 mK, Halo: 0.2 mK

Cooling the temperature leads to a long-term increase in the pattern clarity

• High density spokes form at 2 ns and outer wheel is visible by 2.7 ns

− Temperature distribution retains much more spatial structure

than for previous cases

Electron temperature (K) above and charge density ( µC/m3) below at time t = 0 ns, 1.3 ns, 2.0 ns, 2.7 ns
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Varying The Initial Densities

Beamlet Radius: 0.05 mm (50% of previous case)

Decreasing beamlet radius only leads to cross-over at the interaction points

• High density fringes cross around 2 ns

− Coulomb explosion provides sufficient energy to overcome the

beam-beam cooling

− Final thermal profile of the beam is much warmer

Electron temperature (K) above and charge density ( µC/m3) below at time t = 0 ns, 1.0 ns, 1.5 ns, 3.0 ns
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Varying The Initial Densities

Beamlet Radius: 0.05 mm, Halo Radius: 0.5 mm, Ring: 0.25 mm

Scaling the geometric arrangement with the increase in density leads to

faster pattern formation

• High density spokes and wheel are visible at 1 ns

− Faster increase in beam temperature as well

− Rapid heating leads to a blurring of the final pattern over time

Electron temperature (K) above and charge density ( µC/m3) below at time t = 0 ns, 1.0 ns, 1.5 ns, 2.0 ns
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Concluding Remarks



Conclusions

Cold Electron Beamlets will Interact to Form Complex Patterns

The overall results are similar to those for the rubidium ions

• Formation occurs in O(1 ns)

Initial Temperature and Density of Beamlets Effects Quality of Patterns

• Increasing temperature decreases resolution

− Disappears above initial temperature of 100 K

• Increasing beamlet density leads to shock-wave formations

− Instead of pileup at the boundary, dense regions cross over

• Increasing beamlet density and decreasing the radius commensurately

leads to faster pattern formations

− Overall temperature increases more substantially
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Conclusions

Practical Impacts of these Studies

Based on thermal plots, core beam temperature can be limited if geometric

parameters are optimized

• Optimal proximity has a damping effect on Coulomb explosion

− Disappears above initial temperature of 100 K

• High energy electrons are concentrated at the extremity of the

beamlet array

− Can be selectively removed (ie. via collimation)

− Efficiently cools the beam with a minimal loss of particles

Provides a possible tool for emittance/temperature measurement in the

ultracold regime

• Characterization of initial beam properties based on the observed

spatial distribution

− Beam structures can persist over longer timeframes
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