

Study of The Electron Seeded Proton Self-modulation Using FBPIC

Presented by Linbo Liang

On behalf of

Linbo Liang^{*1,2}, Alexandre Bonatto³ and Guoxing Xia^{1,2}

¹The University of Manchester, Manchester, United Kingdom

²Cockcroft Institute, Daresbury, United Kingdom

³Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil

*Email: linbo.liang@postgrad.manchester.ac.uk

Presented to the 12th International Particle Accelerator Conference-IPAC'21 24-28 May 2021

CERN Advanced Wakefield experiment (AWAKE)

Achievements:

- Self-modulation of the SPS proton bunch;
- Acceleration of externally injected, 18 MeV electrons to the 2 GeV→ ~200 MV/m
 Problems:
- Only use half of the proton beam->weak wakefields;
- Layout of the Run 1 experiment setup

Credits: Adli, E., *et al.* Acceleration of electrons in the plasma wakefield of a proton bunch. *Nature* **561**, 363–367 (2018).

Proton density self-modulation

Initial Beam/Plasma parameters

- Proton beam: Q_p = 4.8 nC, σ_{zp} = 7 mm, σ_{rp} = 0.2 mm, E_{p0} = 400 GeV, $\Delta E_{p0}/E_{p0}$ = 0.035%,
- Seed beam: $Q_e = 0.5 \text{ nC}$, $\sigma_{ze} = 0.3 \text{ mm}$, $\sigma_{re} = 0.2 \text{ mm}$, $E_{e0} = 18 \text{ MeV}$, $\Delta E_{p0}/E_{p0} = 0.1\%$
- Plasma: $n_0 = 2 \times 10^{14} \text{ cm}^{-3}$, Rubidium

*Co-moving coordinate $\xi = z - ct$, z–longitudinal coordinate, c—the speed of light *Propagation distance s=ct

Longitudinal plasma wakefield Ez

- Seed beam depleted -> damping of the seed wakefield
- 2. Plasma electron trajectory crossing ->

 $\widehat{\underline{\varepsilon}}$ Wave-breaking

- -0.102 🔂 3. Proton self-modulation reaches saturation -
 - > the maximum longitudinal wakefield
 - 4. Phase shift of the wakefield w.r.t micro
 proton bunches -> wakefield amplitude
 decay

Figure 2: Evolution map of the on-axis longitudinal plasma wakefield Ez for the uniform plasma profile case.

Trajectory crossing and wave-breaking

Figure 3: Plasma electron density distribution at s = 0.4 m.

- Some plasma electrons are pushed out of the plasma column by seed wakefield.
- Re-entry of kicked-out plasma electrons due to charge separation force.
- Plasma wave-breaking as a result of trajectory crossing of re-entry plasma electrons.

 r_w : simulation window width, $r_w = 3.2 \text{ mm}$ r_{pe} : plasma column radius, $r_{pe} = 1.6 \text{ mm}$

Effect of plasma density step

Figure 4: The maximum accelerating gradient for distinct plasma density profiles. The vertical dashed line marks s = 0.8 m. The insert at the upper-right conner shows the schematic layout of the plasma density step.

- Proper plasma density step can make the self-modulation slow down and maintain the wakefield amplitude for longer distance.
- The final maximum accelerating gradient of the case with proper plasma density step is about 75% higher than that of a uniform plasma profile.
- Plasma density step should be implemented before reaching the saturation point.

Conclusion

- The electron seeded self-modulation is observed in the simulation by the quasi-3D full PIC code FBPIC.
- By using a proper plasma density profile, one can effectively maintain the final accelerating gradient at a significantly higher level.
- The results generally agree with those from other codes.
- The study of the full scale problem using FBPIC is still very difficult due to the ultra-high computing cost.

Thanks for your attention!