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Introduction

* The Laser driven ion acceleration is a hot topic of laser plasma physics [1]. In the last two decades several ion acceleration mechanisms have been suggested and extensively studied, e.g. the target normal sheath acceleration (INSA), the collisionless
electrostatic shock acceleration (CESA), the radiation pressure acceleration (RPA), and the Coulomb explosion acceleration (CEA) [1]. Although rather successful CESA acceleration of 1ons in gas plasma was demonstrated [2], in most laser-ion acceleration
experiments thin metal or plastic foil targets are used.

* The other exception 1s the CEA mechanism. This was most extensively investigated in cluster plasmas [3,4]. If other mechanisms are not significant, CEA 1n clusters result spherically symmetric acceleration. This do not cause any problem for example in case
of neutron generation by DD fusion in deuterium (D) clusters [5].

* We have been working on a new scalable and controllable particle (ion) accelerator setup by CEA in gas plasma instead of cluster one. Our simulations based on the recently proposed RNLS [6], which predicts 11 m] THz pulse energy with up to 40MV /cm

beak electri field.

Proposed setup

*  We numerically investigated the ion acceleration by Coulomb explosion following ripping the electrons from gas plasmas by high energy ultrafast standing waves. Few years before this technique was used to simulate electron acceleration from gas plasma [7].
* We simulated a tabletop accelerator setup using THz pulses. For the numerical simulations of the particle acceleration, EPOCH and GPT codes were used [8].

* Injection of particles is accomplished by ionizing atoms in a gas jet with a short laser pulse. We examined the effects of standing waves concerning the etficiency of the particle acceleration.

* On the other hand, we investigated the effects of the different initial bunch charges, initial bunch shapes (different dimensions), and the number of THz sources with respect to the final kinetic energies and final dimensions of the bunch. After the

acceleration stage around 0.1 MeV peak ion - and higher than 0.6 MeV electron energy can be achieved using the optimized setups. Generating with 0.7 % efficiency of sub-MeV energy protons and ~ 0.4 MeV electrons, both with 1.1 nC bunch charge is

predicted. I. Laser Parameters II. Bunch parameters (deuteron/proton) II1. Bunch parameters (electron)

p

Parameter Value Parameters (long cylinder) Value Parameters (,,disk”) Value Parameters (short cylinder) Value
Accelerator THz pulse frequency 0.3 THz

lonising laser (~fs)

E-beam energy (¥o) 0—4eV E-beam energy (Yo) 0—4eV E-beam energy (yo) 0—4¢eV

Accelerator THz pulse beam waist | 1000 um (A)

| E-b length (L 250 E-b length (L 12.5 -
s THz Accelerator THz energy/pulse 33.55 m] cam length () — cam length (1) _— E-beam length (1) 7> pm
Accelerator THz pulse electric field | 20 MV/cm | |[F-beam diameter (d) 25 pm E-beam diameter (d) 250 um E-beam diameter (d) 46 pm
Erne Accelerator THz pulse FWHM 2.025 ps E-beam charge (total pulse) 0.7 nC E-beam charge (total pulse) 1.1 nC E-beam charge (total pulse) 10-300 pC
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IV. Pulse shapes

IV/b) One cycle IV/c) Two cycles IV/d) Three cycles
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*  We simulated standing wave with 0.3 THz mean frequency to accelerate the particles (Fig IV /a). Two counter propagating THz pulses * We have examined the importance of the number of cycles concerning both the final spatial

distribution and final energy spectra.
*  We simulated 0.5 -3.0 cycle(s) standing waves using two THz pulses to accelerate the particles (,,disk”)*.
* We optimized the shape of the initial ionized region (short cylinder as an initial bunch shape 1s simulated)
and investigated the effect of different initial bunch charges.

accelerate the particles. We simulated the THz pulses with the conditions in table I. We had simulated the ionized region with two different
shapes (,,long cylinder”, "disk™, see in table II), and we investigated its effects.

* Using a proper synchronization (IV/a), we can eliminate the positive (decelerating) part of the THz pulses, thereby achieved higher kinetic
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* Different initial bunch shapes cause different limitations in case of the bunch charge and thereby in their energy spectra.

*  We take into account the achievable maximum bunch charges in case of the different bunch shapes (Table II). Sp atlal dlS tr lbUtlon - ,,0.5 CYCle THZ” ; ShOl‘ t CYllnder

* The spatial distribution of the deuteron bunches are different. ,,Disk™: huge percentage of the deuterons propagate in the polarization
direction (z- plane). Long cylinder: huge percentage of the deuterons propagate perpendicular to the polarization direction (z- plane).

* Using tilted pulses, the ,,Jong cylindet” initial bunch shape also could be appropriate for further applications.

* The electrons could achieve from rest to around 600 keV final kinetic energy.

* The smaller the initial bunch charge is, the narrower both the spatial distribution and energy spread is.
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