Investigation of the Thomson scattering influence on electron beam parameters in an energy-recovering linear Accelerator on the example of MESA

Christoph Lorey (KPH, Mainz) Atoosa Meseck (KPH, Mainz) Paul Ignatius Volz (HZB, Berlin)

Gefördert durch die DFG im Rahmen des GRK 2128

Mainz Energy-Recovering Superconducting Accelerator (MESA) Layout

2

Graphic is a modified version of Fig.1.2 in D.Simon's "Gesamtkonzept für den MESA-Teilchenbeschleuniger unter besonderer Berücksichtigung von Strahloptik und Kryotechnik" PhD Thesis

Mainz Energy-Recovering Superconducting Accelerator (MESA)

Beam energy ER/EB	[MeV]	105 / 155 /	130MeV potential Thomson scattering mode
Injection Energy	[MeV]	5	Injector
Operating mode		CW	
Source type		DC 100 keV, pol. (DC 200 keV, pol.)	possible location for Thomson scattering arc
Bunch charge ER/EB	[pC]	0.77 / 0.12 (7.7 / 0.12)	
Norm. emittance ER/EB	[µm]	< 1 / 0.15 (< 2 / 0.15)	
Beam polarisation EB		> 0.85	
Accelerating passes ER/EB		2/3	
Beam power at exp. ER/EB	[kW]	100 / 23 (1000 / 23)	
RF-frequency	[MHz]	1300	DarkMESA
RF-power installed	[kW]	300	
Main linac energy gain/turn	[MeV]	50	
Main linac gradient	[MV/m]	13 (16) ,	[*] EB = external beam mode ER = energy recovery mode

18.05.21 | Christoph Lorey | JGU MAINZ | KPH | Thomson scattering influence on electron beam at MESA

Brief overview of Thomson scattering parameters

¹Curatolo, C.. "High brilliance photon pulses interacting with relativistic electron and proton beams." (2016).

18.05.21 | Christoph Lorey | JGU MAINZ | KPH | Thomson scattering influence on electron beam at MESA

ThoBaSCo calculation of normalized scattered photon intensity for 130MeV MESA & 1132nm Laser

Python calculations for Thomson scattering of 130MeV MESA electron bunch & 1132nm Laser at observation angle $\theta = 1/(3\gamma)$

6

JOHANNES

GUTENBERG UNIVERSITÄT MAINZ

ThoBaSCo calculation of normalized scattered photon intensity for 130MeV MESA & 566nm Laser

JOHANNES GUTENBERG Python calculations for Thomson scattering of 130MeV MESA electron bunch & 566nm Laser at observation angle $\theta = 1/(3\gamma)$

9

JOHANNES

GUTENBERG UNIVERSITÄT MAINZ Longitudinal phase space of MESA 130MeV 0.77pC electron bunch after 566nm Thomson scattering

10

JOHANNES GUTENBERG

> /ERSIT. MAINZ

ThoBaSCo calculation of normalized scattered photon intensity for 130MeV MESA & 283nm Laser

JOHANNES GUTENBERG Python calculations for Thomson scattering of 130MeV MESA electron bunch & 283nm Laser at observation angle $\theta = 1/(3\gamma)$

12

JOHANNES

GUTENBERG UNIVERSITÄT MAINZ

- Thomson scattering with small a_0 results in a per mille of electrons possessing a lower energy. $E_{var} \approx 0.0011 0.0044$ for $\lambda = 1132 - 283nm$
- As MESA runs at 1.3GHz, a MHz repetition rate on the electron side is easily achievable while a 1kHz lasers pulse rate is commonly available and can feasibly be multiplied using Fabry-Perot Cavity solutions, both ensuring a high scattered photon flux.
- recovery and transportation of halo particles depends on Thomson scattering arc design as well as MESA energy acceptance
- this constitutes a hard limit of achievable maximum scattered photon energy independent of laser feasibility

Outlook on further work as part of PhD thesis

15

- detailed gamma radiation intensity study
- lattice design for Thomson scattering arc
- investigation into ways to take advantage of beam polarization
- detailed start to end simulation for Thomson scattering source at MESA

